共查询到4条相似文献,搜索用时 0 毫秒
1.
Jiang-Wen Fan Quan-Qin Shao Ji-Yuan Liu Jun-Bang Wang Warwick Harris Zhuo-Qi Chen Hua-Ping Zhong Xin-Liang Xu Rong-Gao Liu 《Environmental monitoring and assessment》2010,170(1-4):571-584
Inter-annual dynamics of grassland yield of the Three Rivers Headwaters Region of Qinghai–Tibet Plateau of China in 1988–2005 was analyzed using the GLO-PEM model, and the herbage supply function was evaluated. The results indicate that while grassland yield in the region showed marked inter-annual fluctuation there was a trend of increased yield over the 18 years of the study. This increase was especially marked for Alpine Desert and Alpine Steppe and in the west of the region. The inter-annual coefficient of variation of productivity increased from the east to the west of the region and from Marsh, Alpine Meadow, Alpine Steppe, Temperate Steppe to Alpine Desert grasslands. Climate change, particularly increased temperatures in the region during the study period, is suggested to be the main cause of increased grassland yield. However, reduced grazing pressure and changes to the seasonal pattern of grazing could also have influenced the grassland yield trend. These findings indicate the importance of understanding the function of the grassland ecosystems in the region and the effect of climate change on them especially in regard to their use to supply forage for animal production. Reduction of grazing pressure, especially during winter, is indicated to be critical for the restoration and sustainable use of grassland ecosystems in the region. 相似文献
2.
Glaciers have a very obvious feedback effect on the global water cycle and environmental change. The Qinghai–Tibetan Plateau, also known as the “Water Towers of Asia,” provides an important source of freshwater resources derived from glacial meltwater. Changes in glaciers on the Qinghai–Tibetan Plateau are the most important aspect of the research related to global climate change. Because only a few input parameters are available, the degree–day factor model of glacier mass balance has been widely used on the Qinghai–Tibetan Plateau. Study of the spatial distribution pattern of degree–day factors for glaciers on the Qinghai–Tibetan Plateau and the factors that influence glaciers is important scientifically. The study of degree–day factors is important to the calculation of the glacial grid mass balance on the Qinghai–Tibetan Plateau, and this data can be used in the analysis of the response of glaciers experiencing climate change and for predicting future glacial trends. Through an analysis of the degree–day factors related to 24 glaciers on the Qinghai–Tibetan Plateau, one can conclude that the mean value of glacial degree–day factors on the Qinghai–Tibetan Plateau is 8.14 mm day?1 °C?1. The glacial degree–day factor shows a longitudinal zonality with values ranging from high to low from east to west, a latitudinal zonality with values ranging from high to low from south to north, and a vertical zonal regularity along with the change of elevation. The spatial distribution pattern of glacial degree–day factors in the Tibetan Plateau is related to the fact that the climate environment across the Qinghai–Tibetan Plateau is mainly affected by the Indian monsoon, the eastern monsoon, and the westerly winds. The climate gradually changes from cold-humid to warm-humid from northwest to southeast. The single-unit glacier of Qinghai–Tibetan Plateau—the Renlongba Glacier—is located in the southeastern portion of the Qinghai–Tibetan Plateau in a warm and humid climate; its degree–day factor is slightly large, averaging at 6.12 mm day?1 °C?1. Mountainous barriers exist in the eastern and western parts of the Renlongba Glacier. On the east side, the degree–day factor is small (5.63 mm day?1 °C?1) because of large mountains block weather systems. The glacial tongue is affected by valley wind, contributing to glacial ablation, so the degree–day factor is large on the tongue, averaging at 6.56 mm day?1 °C?1. The degree–day factor on the west side of the Renlongba Glacier increases gradually increasing radiation and elevation, presenting a vertical zonal feature. In general, the climate of the Qinghai–Tibetan Plateau is mainly affected by the Indian and eastern monsoons and by westerly winds. In dry and cold climatic conditions, the glacial degree–day factor in the Tibetan Plateau is small, while at warm and humid climate conditions, it is large, with latitudinal, longitudinal, and vertical zonality. In addition, the degree–day factor is also affected by blocking, topography, and other local microclimatic conditions. 相似文献
3.
The effects of grassland degradation on plant diversity,primary productivity,and soil fertility in the alpine region of Asia’s headwaters 总被引:1,自引:0,他引:1
Xuexia Wang Shikui Dong Bing Yang Yuanyuan Li Xukun Su 《Environmental monitoring and assessment》2014,186(10):6903-6917
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland. 相似文献
4.
The seasonal effects of untreated and treated municipal sewage on the nutrients-nitrate (NO(3)), phosphate (PO(4)), sulphate (SO(4)), and the biochemical oxygen demand (BOD), chemical oxygen demand (COD) and dissolved oxygen (DO) of the receiving urban canal, the Buckingham canal at Kalpakkam (Tamil Nadu, India) was monitored monthly during pre- monsoon-2005 to post-monsoon-2006. The NO(3), PO(4) and SO(4) contents were higher in the downstream than that of the upstream of the outfall points of treated as well as untreated sewage, of the canal. The NO(3) and PO(4) contents were higher during summer than that of monsoon; however the SO(4) was higher during winter and lower during summer in the canal water. The BOD and COD were lower and DO was higher at the upstream than that of downstream of the canal. The concentrations of BOD and COD were higher during summer season, which decreased during monsoon season, while the DO decreased during the summer season and increased in monsoon season in the canal water. Cluster analysis applied to the six sampling points of the canal, has grouped them based on the water quality similarities. 相似文献