首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素废水二级生化处理出水进行深度处理,考察了组合工艺对废水污染物的去除效果,通过三维荧光光谱结合平行因子法(EEMs-PARAFAC)分析了废水中有机物的荧光变化特征,并利用Illumina MiSeq高通量测序技术对BAF中微生物菌群结构的变化进行研究.结果表明,在最佳运行条件下,抗生素废水COD平均值由232 mg·L-1降至46 mg·L-1,NH4+-N平均浓度由12 mg·L-1降至4.1 mg·L-1,出水水质可稳定达到《发酵类制药工业水污染物排放标准》(GB21903-2008).EEMs-PARAFAC从废水中解析出3类荧光组分,主要可归为腐殖酸(胡敏酸)、富里酸及其混合物,经组合工艺处理后荧光强度大幅下降甚至消失.Illumina MiSeq测序显示,污泥经抗生素废水驯化后微生物丰富度和均匀度明显降低,Proteobacteria(变形杆菌门)、Chloroflexi(绿屈挠菌门)和Firmicutes(厚壁菌门)是优势菌门,其中,Thiothrix(发硫菌属)、ThermomonasPseudoxanthomonas(假黄单胞菌属)和JG30_KF_CM45是降解抗生素类污染物的主要菌属.  相似文献   

2.
利用臭氧催化氧化工艺,对焦化废水生化出水进行深度处理,考察了催化剂类型、用量、反应时间对COD去除率的影响。研究结果表明:p H值为7~8,臭氧流量10g/h,催化剂8g,反应时间约50min,臭氧催化氧化对COD去除率达到68.63%,出水指标满足炼焦化学工业污染物排放标准(GB16171-2012)。  相似文献   

3.
生物过滤氧化反应器处理焦化废水   总被引:4,自引:0,他引:4  
针对钢铁厂焦化车间采用普通活性污泥工艺处理焦化废水 ,出水水质经常超标 ,且对冲击负荷适应力差的情况 ,使用生物过滤氧化反应器 (BIOFOR)工艺对废水进一步进行处理 ,运行结果表明 ,BIOFOR表现出良好的抗冲击负荷能力 ,对CODCr、NH3 N、SS、油类、酚、氰化物等主要污染物的去除率都分别为 6 4 7%、79 8%、76 6 %、5 2 1%、95 4 %、6 1 4 % ,出水水质高于GB8978 1996第二类污染物二级排放标准。  相似文献   

4.
根据包钢生化二级处理水质及处理水回用要求,选取"Fenton氧化+生物接触法+膜处理"和"臭氧+生物活性炭+膜处理"两套焦化废水深度处理方案进行中试试验,通过试验比较分析了两套方案的技术经济性,得出采用"臭氧氧化+生物活性炭+膜处理"工艺技术可行,并结合实际提出了焦化废水分级处理的出水回用途径.  相似文献   

5.
宜昌某化工厂产生的化工废水具有高COD(COD=36400mg/L,主要成分为二苯甲酮),高氯,强酸性,难以直接进入生化池,该化工厂已有三座铁碳池以及除氯装置。本研究通过铁碳-芬顿、臭氧、高铁酸钾氧化多种高级氧化工艺组合,确定了工艺流程,依次通过二连铁碳微电解、芬顿、臭氧氧化和第三次铁碳微电解,最终COD可以降解至3280mg/L,去除率达到90.1%。  相似文献   

6.
采用微电解-芬顿氧化的组合工艺处理末端焦化废水,考察静态实验中微电解填料的铁碳比、过氧化氢添加方式及加入量、曝气量、反应时间、pH值等不同条件因素对COD去除率的影响情况,确定最佳条件是铁碳质量比是2.5∶1,分批加入过氧化氢,且加入量为0.25 mL/L,曝气量为1.25 L/min,pH值为3,反应时间140 min.最终实现将焦化废水COD的去除率达88%以上的目的.按静态实验的各因素条件进行动态实验,试验结果COD去除率可达87%以上,处理后℃OD质量浓度为为91 mg/L,达到排放标准.同时处理后焦化废水的颜色变淡.  相似文献   

7.
新型非均相电-Fenton技术深度处理焦化废水   总被引:4,自引:3,他引:4  
分别采用高效氯气还原阴极PAQ/GF和形稳性阳极IrO2-RuO2-TiO2/Ti做为阴、阳极,填充非均相催化剂,研究一种阴、阳极同时催化氧化的电化学过程,并应用于焦化废水生化出水深度处理.采用在石墨毡上电聚合蒽醌制备PAQ/GF电极,并用循环伏安进行了表征.结果表明,蒽醌在电极表面具有很好的可逆性,并对电催化还原氧气...  相似文献   

8.
纺织印染厂废水的深度处理中试及工程应用   总被引:2,自引:1,他引:1  
采用曝气生物滤池(BAF)-臭氧-曝气生物滤池工艺对广东某大型纺织印染厂的常规水解酸化-接触生物氧化处理出水进行深度处理回用中试,在中试研究成功的基础上,设计了每小时处理5 t的工业化试验装置。试验运行结果表明:进水COD为100~150 mg/L,色度约80倍,浊度约10 NTU,在前BAF水力停留时间3 h,中间化学氧化池中臭氧投加量40 mg/L,后BAF水力停留时间2 h的情况下,经组合工艺处理后出水COD约30 mg/L,色度2倍,浊度<1 NTU,该工艺处理后的出水,可直接回用于对电解质浓度要求不高的生产工艺中,也可作为反渗透或纳滤膜的预处理工序。  相似文献   

9.
张磊  张永丽  梁英 《环境工程》2015,33(4):1-3,8
选用生物沸石作为混凝剂,对水性油墨废水中的水溶性树脂连结料以及颜料等悬浮物进行混凝沉淀去除。实验结果表明:当生物沸石投药量为350~400 mg/L时,COD去除率可达87%,混凝上清液呈淡粉红色,色度去除较好。然后将混凝上清液与经BAF处理后的生活污水1∶1混合后通过曝气生物滤池(BAF)进行生物处理,当进水ρ(COD)为450.1 mg/L时,出水ρ(COD)为131.4 mg/L,即水性油墨废水经生物处理后出水COD质量浓度约为262.8 mg/L,达GB 8978—1996《污水综合排放标准》的要求。  相似文献   

10.
采用"浅层气浮-臭氧-曝气生物滤池"工艺对安徽某造纸厂二级生化出水进行深度处理试验。结果表明:聚合氯化铝投加量在120 mg/L的条件下,COD去除率达27%。臭氧-曝气生物滤池组合工艺对各种污染物均有较好的去除效果。气浮出水经臭氧-曝气生物滤池处理后,浊度降至3 NTU以下,UV254去除率达92.5%,色度去除率接近80%,COD降至50mg/L以下,完全达到GB 3544—2008《制浆造纸工业水污染物排放标准》。  相似文献   

11.
Fenton-混凝沉淀法处理焦化废水的研究   总被引:10,自引:2,他引:10  
对焦化废水采用预氧化(Fenton)-混凝沉淀法进行处理,主要研究了以氯化铁、聚丙烯酰胺(PAM)为混凝剂的混凝沉淀法和Fenton氧化-混凝法的最佳工艺条件。结果表明:Fenton-混凝沉淀法处理焦化废水时,色度、COD、NH3-N去除率分别是84.3%、92.9%、96.2%,均达到国家标准。采用Fenton-混凝沉淀法时处理焦化废水的效率高于单独采用化学混凝法时的处理效率。  相似文献   

12.
生物滤池A/O工艺处理焦化废水研究   总被引:3,自引:1,他引:3  
赖鹏  赵华章  叶正芳  倪晋仁  曾明 《环境科学》2007,28(12):2727-2733
采用具有特定载体的生物滤池A/O工艺处理焦化废水.废水含有高浓度酚类化合物,COD和NH+4-N分别约2?000 mg/L和260 mg/L.在HRT为60 h时,COD和NH+4-N平均去除率分别达到了87.0%和91.6%,最佳条件下出水NH+4-N浓度达到了国家一级排放标准.生物滤池A/O工艺高效去除了原水中小分子质量的酚类化合物,出水中有机物主要分布于10?000~30?000相对分子质量范围,且含有—OH、CO、C—O等官能团和苯环结构.由于载体的支持和保护作用,大量微生物固定于载体的表面和内部,实现了COD、NH+4-N和TN的同时去除.生物滤池A/O系统具有运行稳定、抗冲击等优点.  相似文献   

13.
针对PCB废水难降解及含重金属铜的特点,在经过一系列的物化处理的基础上,采用AF+BAF组合工艺对其进行深度处理。试验研究中,通过控制污水在反应器中的停留时间,使得废水在AF中水解酸化,以增加废水的可生化性,在此基础上利用BAF的生物膜来去除污水中剩余的有机物。试验结果表明,试验系统对PCB废水中的COD、Cu2+去除效果良好,出水COD、Cu2+的含量分别稳定在10~50mg/L和0.02~0.1mg/L,达到排放标准。  相似文献   

14.
分别采用普通氧化混凝法以及螯合技术综合法对某钢铁集团公司焦化厂焦化废水生化处理后出水进行深度处理。使用气相色谱-质谱(GC-MS)联用仪检测分析了生化处理废水以及两种深度处理技术处理后废水的有机污染物组成。研究结果表明,该螯合技术比普通氧化混凝技术更有效地去除焦化废水中大量的含氨氮、酚、氰、吡啶、硫化物、喹啉等有毒有害的有机污染物,特别是一些无法被氧化降解的杂环化合物及衍生物。  相似文献   

15.
针对焦化厂二级生化出水CODcr、色度不达标问题,研究采用PAC和PFS对焦化厂二级生化出水进行深度处理研究。研究确定了各混凝剂的最佳投药量和最适pH值,对比了各混凝剂在最佳混凝条件下的处理效果,以及在最佳投药量条件下最佳pH值。结果表明:PAC最佳投药量为6g/L,PFS最佳投药量为5.5g/L;在最佳投药量的条件下,对CODcr去除较好的是PAC,去除率为44.83%;对色度去除率两者相同,都为80%;二者最佳pH值均为7。  相似文献   

16.
硅酸钙深度处理焦化废水中COD的试验研究   总被引:1,自引:0,他引:1  
以硅酸钙作为吸附材料,研究了废水pH值、投加量及振荡时间对硅酸钙吸附性能的影响,结果表明:pH值为4,投加量为3.15g/100 mL,振荡时间为45 min时吸附达到平衡,硅酸钙对焦化废水生化出水中COD的去除率为46.3%;吸附等温线拟合结果表明,该吸附过程较符合Freundlich吸附等温式.  相似文献   

17.
利用浸渍法,将Fe3+负载在经酸碱改性后的粉状活性炭上,当浸渍液浓度为2.5%,固化温度为270℃时,制成的催化剂催化活性较高。用自制的非均相类benton试剂降解焦化废水,通过正交试验和极差分析得出,影响因素的主次顺序为催化剂用量〉初始pH值〉反应时间〉H:0:投加量。结果表明,在100ml水样中。室温条件下,初始pH值为4.0,催化剂使用量为1.5g,H20:投加量为5ml(分两次投加),反应时间为90min时,COD去除率可达99%。采用混凝+化学沉淀+非均相类Fenton试剂法处理焦化废水,各主要出水水质指标为:色度lO倍;COD浓度38.5mg/L;氨氮浓度8.4mg/L,达到国家一级排放标准。  相似文献   

18.
蒋辉  范迪  王娟 《环境科学与管理》2010,35(4):85-89,110
研究采用NaClO产生的HClO代替Fenton试剂中的氧化剂H2O2,并与Fe^2+协同处理焦化厂二级生化出水。结果表明:NaClO投加量,溶液的初始pH值,Fe^2+投加量,反应温度和投加方式是影响Fe^2+/NaClO处理焦化废水效果的重要因素,而反应时间对处理效果的影响不大。在相同实验条件下,Fe^2+/NaClO协同处理焦化废水的效果优于Fenton试剂。NaClO投加量为2 mL/L,pH=3,Fe^2+投加量为40 mg/L,反应时间为10 min,反应温度为25℃~45℃的最佳实验条件下,Fe^2+/NaClO对CODcr的去除率和色度的去除率分别为62.2%和81.7%,剩余CODcr能降到136 mg/L,色度减小为64倍,达到了国家二级排放标准的要求。  相似文献   

19.
臭氧-曝气生物滤池处理港口化学品洗舱废水   总被引:3,自引:1,他引:2  
采用臭氧-曝气生物滤池工艺对广东某港口化学品废水进行处理。针对此类废水COD高、水质变化大、成分复杂的特点,探讨了废水的初始pH、臭氧投加量和催化剂等因素对臭氧氧化的影响,臭氧对废水可生化性的改善情况、不同曝气生物滤池停留时间对废水COD去除率的影响。试验结果表明:进水化学需氧量(COD)约1700mg/L,在臭氧投加量538~716mg/L,BAF水力停留时间30h的情况下,经组合工艺处理后出水COD低于250mg/L,处理后废水达到排放城市污水处理厂的废水接纳标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号