首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
以对硝基苯甲酸废水、鸟嘌呤废水、乙醛废水和乙醇胺废水为例,对臭氧/活性炭氧化去除废水中有机物的效果进行了初步研究,考察了臭氧投加量、pH值和紫外光等因素对臭氧/活性炭催化氧化高浓度有机废水的影响,并在最优条件下,验证了该工艺作为高浓度有机废水预处理手段,在去除废水中COD和提高可生化性(BOD5/COD)等方面的综合效果.结果表明,活性炭作为催化剂与臭氧共同作用,对对硝基苯甲酸废水COD的去除率明显高于单独臭氧氧化和活性炭吸附;臭氧/活性炭氧化对乙醛废水和乙醇胺废水这类短链类有机物降解作用不大,但对硝基苯甲酸废水、鸟嘌呤废水这些含有苯环类、长链类的有机物,去除效率较高;在中性偏碱时,pH的提高有利于COD的去除,但过高pH对COD的降解效果反而有所减弱,pH=9.0是比较合适的;在紫外光催化的条件下,采用臭氧/活性炭氧化工艺处理对硝基苯甲酸废水,COD去除率可达到52%,废水的生化性(BOD5/COD)由原来的0.10提高到0.32,大大提高了废水的可生化性.  相似文献   

2.
丁春生  秦树林  缪佳  宁平 《环境科学》2008,29(5):1266-1270
以对硝基苯甲酸废水为处理对象,分别考察了活性炭投加量、二氧化氯投加量、pH值及反应时间等因素对二氧化氯/活性炭催化氧化工艺处理对硝基苯甲酸废水的影响.并在最优条件下,通过试验考证了该工艺作为高浓度对硝基苯甲酸废水的预处理手段,在去除废水中COD和提高可生化性(BOD5/COD)方面的综合效果.结果表明,采用ClO2与活性炭组成催化氧化体系,其处理COD为109印mg·L-1,的对硝基苯甲酸废水,效率比单独使用二氧化氯高10%;在废水pH值为4.1时,当活性炭投加量为200 g·L-l、反应时间30 min、二氧化氯投加量为300 mg·L-1,时,废水的COD降至7 100 mg·L-1,去除率达到35%, BOD5浓度提高到1 810 mg·L-1,废水的BOD5/COD值由原来的0.10提高到0.25,明显提高了废水的可生化性.因此,二氧化氯/活性炭催化氧化工艺是预处理高浓度对硝基苯甲酸废水的有效手段.  相似文献   

3.
非均相催化臭氧处理高浓度制药废水的研究   总被引:5,自引:1,他引:4  
非均相催化臭氧是一种对高浓度制药废水进行预处理的有效方法.本研究采用单一活性炭吸附、单一臭氧氧化和臭氧/活性炭联用3种体系对实际制药废水进行预处理,并对处理过程中的工艺参数进行优化.结果表明,相比单一活性炭吸附和单一臭氧降解体系,臭氧/活性炭联用体系能显著提高COD、TOC的去除率及BOD5/COD值,并显示出良好的协...  相似文献   

4.
精细化工有机废水的臭氧催化氧化   总被引:1,自引:0,他引:1  
以含染料中间体和医药中间体为主的精细化工有机废水作为研究对象,针对该类废水生化处理低效率的问题而开展催化臭氧实验,探讨了催化剂种类、反应条件和催化剂协同臭氧作用的最佳条件,考察了COD去除率、脱色率、BOD5/COD各指标及产物的过程变化。结果表明,与活性炭或Cu/C相比,Mn/C协同臭氧效果更佳,在臭氧流量为4g/h,反应时间2h,pH为9,脱色率和COD去除率分别为91.6%和34.9%。经过UV-vis分析发现,由于臭氧的氧化作用,使废水中不饱和基团被破坏,复杂有机物转化为小分子化合物。经过处理后原水的BOD5/COD由0.236提高到0.419,生化性得到明显提高,有利于后续生物处理。  相似文献   

5.
彭枫  潘霞 《环境工程》2014,32(5):14-16
采用臭氧-活性炭工艺对焦化废水生化出水进行深度处理试验。结果表明:臭氧-活性炭工艺对焦化废水生化出水具有良好的深度处理效果。在空气流量为75 L/h,臭氧浓度为100 mg/L,pH=10.5,反应时间为30 min的最佳试验条件下,当深度处理进水水质ρ(COD)=156.5 mg/L、色度=110倍时,其去除率分别为69.65%和92.27%,出水COD和色度的平均值分别为47.50 mg/L和8.50倍,均达焦化废水排放新标准。  相似文献   

6.
臭氧-活性炭技术处理炼化企业RO浓水   总被引:3,自引:1,他引:2  
采用臭氧-活性炭技术对炼化企业RO浓水进行实验研究。通过研究该废水在不同pH、臭氧投加量、臭氧接触时间、投加催化剂、活性碳吸附时间和活性碳投加量条件下RO浓水中COD的去除效果,确定臭氧-活性炭工艺处理炼化企业RO浓水的工艺参数。结果表明:在pH为8,臭氧投加量为75 mg/L,臭氧接触时间为5 min,催化剂KMnO4的投加量为35 mg,活性炭吸附时间为150 min,活性炭投加量为4 g/L时,臭氧-活性炭技术对RO浓水中COD处理效果达到最佳,总去除率为58%。  相似文献   

7.
汤成莉  常青  延卫 《环境工程》2012,(Z2):59-63
采用铁炭微电解技术为核心工艺的混凝-铁炭微电解-强化电解组合工艺对大蒜切片废水进行处理,主要研究了铁炭微电解的运行参数,包括曝气与否、废水pH值、反应时间、铁炭质量比、铁水质量比对COD去除效果的影响。结果表明:经过组合工艺处理后,废水刺鼻的气味完全消除,浊度去除率达100%,ρ(COD)值由13050mg/L降至878mg/L,去除率达93.3%,BOD5/COD(B/C)值由0.10提高到0.46,废水的可生化性显著提高。  相似文献   

8.
微波催化氧化法预处理垃圾渗滤液的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用微波-活性炭-Fenton催化氧化预处理垃圾渗滤液,研究了不同因素对垃圾渗滤液处理效果的影响.结果表明,COD和氨氮去除率随活性炭用量、微波辐射时间和微波功率增加而增加;随Fe2+用量和H2O2用量增加,COD和氨氮去除率先增加而后下降;随pH值增加,氨氮去除率显著增加,COD去除率变化不明显.在微波功率为300W,pH值为8,活性炭9g/L,Fe2+用量为0.02mol/L,H2O2用量为7mL/L,辐射时间6min条件下,垃圾渗滤液中COD和氨氮去除率分别达到68.22%和78.08%,SS去除率达到78.55%,浑浊度去除率达到99.02%,颜色由黑褐色去除为接近无色,BOD5/COD由0.21提高到0.45;研究比较了不同处理对垃圾渗滤液的处理效果.结果显示,微波催化氧化对垃圾渗滤液中COD和氨氮去除率明显高于其他处理.  相似文献   

9.
采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理,考查了污染物去除性能,并分析了处理过程中含氮杂环芳烃类污染物降解和废水可生化性变化.结果表明,微气泡臭氧催化氧化对煤化工废水生化出水COD平均去除率和去除负荷分别为26.4%和1.46kg/(m~3·d),并将废水BOD5/COD值由0.038提高至0.30,从而改善后续生化处理COD去除性能,使得COD总去除率达到62.4%,显著优于单独生化处理.微气泡臭氧催化氧化降解含氮杂环芳烃后释放氨氮,其在后续生化处理中被有效去除.此外,耦合处理对废水UV_(254)的总去除率可达68.9%.对耦合处理过程中废水GC-MS、紫外-可见吸收光谱和三维荧光光谱进行分析,结果表明,含氮杂环芳烃是煤化工废水生化出水中主要难降解污染物.同时证实微气泡臭氧催化氧化可有效降解去除含氮杂环芳烃,生成小分子有机物,提高废水可生化性.  相似文献   

10.
利用壳聚糖包覆活性炭颗粒(Chitosan Wrapping Acticarbon,简称CWC)对生活废水进行处理,研究了CWC原料配方比、pH值、搅拌速度和搅拌时间、处理时间等因素对处理效果的影响。经过实验条件的优化,用CWC处理生活废水的最佳pH值为6,最佳CWC投加量为1g/L,最佳搅拌条件为先快速(900r/min)搅拌2min再慢速(100r/min)搅拌1min,而最佳处理时间为8h。在上述优化条件下,CWC对生活废水的浊度去除率为98.41%,COD去除率为74.12%,氨氮去除率为53.14%。加入稀土元素后CWC对生活废水的去浊率达到99%,COD和氨氮去除率可达90%,BOD去除率达95%。  相似文献   

11.
高浓度炼油化工废水HA/O_1/O_2处理工艺及应用   总被引:3,自引:1,他引:3  
主要探讨了一种新的A O工艺组合HA O1 O2 工艺及其技术特点 ,并成功应用于高浓度炼油化工废水处理。工艺采用膜法水解酸化 (HA)、一级泥法好氧 (O1 )和二级膜法好氧 (O2 ) ,设计总停留时间 5 0h。在设计进水水量30 0m3 h、CODCr=12 0 0mg L、BOD5=5 0 0mg L ,Oil≤ 2 0mg L ,pH =6~ 9的条件下 ,出水CODCr≤ 10 0mg L ,去除率达 92 %以上  相似文献   

12.
制药废水中含有大量难生物降解的化学物质,其BOD5/COD值很低,可生化性差。故一般仅采用生化处理很难将其COD降低到排放标准,现采用铁碳微电解法并串联Fenton工艺对某制药厂废水进行预处理。以废水COD为指标并通过正交试验确定达到最佳处理效果的各因素的最佳组合条件为:前端的铁碳微电解反应时间为2.5 h,pH值为5,铁碳质量比1:2,Fe粉的投加量为120 g/L;后续Fenton反应投加30%H2O23 mL/L,FeSO.47H2O(100 g/L)400 mg/L,调节pH值为2,反应时间2.5 h,总去除率大于70%,为工业化应用做出铺垫。  相似文献   

13.
IntroductionThedyeingwastewaterofwoolenmillcontainsalotkindsofpollutants,suchasacidicdyes,dispersedyes,mordantdyes,auxiliaries,saltsandsoon .Theeffluentsfromwastewatertreatmentplantsfortreatmentofthedyeingwastewaterofwoolenmillswithnormalbiologicalproce…  相似文献   

14.
Fenton试剂+SBR法处理纤维素废水的研究   总被引:1,自引:0,他引:1  
采用Fenton试剂+SBR法对COD很高的纤维素废水进行处理。首先用絮凝法预处理纤维素废水,然后加入Fenton试剂进行处理,得出在pH为3、Fe2+用量为1.5×10-2 mol/L即2.28 g/L、H2O2的投加量为0.858 g/L、H2O2和Fe2+的投加量比为6、反应时间为4 h时效果最佳,COD降到1 002.8 mg/L,去除效率为88.3%。然后进行SBR生物处理,厌氧处理8 h,好样处理10 h,此时COD处理效果最好为92.8 mg/L,去除效率为90.7%,BOD5为46.8 mg/L,去除效率为88.3%。  相似文献   

15.
研究采用微电解/A/O工艺处理浆纱废水。试验结果表明:经过微电解处理后的废水可生化性得到明显改善;经过系统处理后,出水COD和BOD5浓度分别为126 mg/L和42 mg/L,COD和BOD5的总去除率分别达到94.5%和73.8%,出水符合国家污水综合排放标准。  相似文献   

16.
采用铁碳微电解/Fenton试剂组合工艺对炼油碱渣废水混凝沉淀处理后出水,进行降解研究。实验结果表明:pH值为3,废水与铁碳填料的体积比为2∶1,微电解反应时间2 h,曝气的条件下,废水的处理效果最好,COD的去除率超过42.5%。Fenton试剂处理微电解反应出水的最佳操作条件是:pH值在2~3之间、反应时间2.5 h、Fe2+浓度为800 mg/L左右、H2O2浓度为0.25 mol/L,在此条件下,Fenton试剂处理微电解处理后的炼油碱渣废水COD平均去除率为63.8%以上,微电解/Fenton工艺对COD的总去除率在79.2%左右,可生化性由0.16提高到0.56。  相似文献   

17.
膜生物反应器处理毛纺废水的中试研究   总被引:30,自引:2,他引:28  
采用中试规模(10t/d)的厌氧-好氧膜生物反应器(A/O MBR)处理毛纺印染废水.当HRT为7h,进水COD、BOD5分别为179~358mg/L和44.8~206mg/L,试验系统对COD、BODs、色度、浊度的平均去除率分别为92.1%、98.4%、60.7%、98.9%,出水水质浓度或指标值分别为20.2mg/L、1.6mg/L、25倍、0.51 NTU.出水水质指标达到建设部生活杂用水水质标准(CJ25.1-89).A/O MBR工艺处理毛纺印染废水技术可行、操作简单、易于管理,可为工业规模应用提供技术参考.  相似文献   

18.
对微波辅助均相催化氧化处理吡虫啉农药废水进行了研究,通过考察H2O2投加量、均相催化剂Fe2+浓度、微波辐照时间及功率、废水温度、废水pH值等因素对该农药废水COD处理效果的影响,获得了最佳工艺条件:即100ml初始COD浓度为268mg/L的农药废水,H202投加量为26.52g/L,均相催化剂Fe2+浓度为109.8mg/L,在微波功率119W,辐射时间为4min,pH为6的条件下,COD去除率可达78.51%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号