首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
当前我国水环境条件逐步改善,污水处理厂数量不断增多,规模不断扩大,而随之产生的剩余污泥体量也逐年增加,剩余污泥重金属直接制约其合理使用效率。通过研究分析重金属产生原因,掌握不同地区污泥重金属含量分布,通过使用不同方法和不同手段对污泥中的重金属进行去除,使得找到对当地最有效最便利的去除重金属的方法,使剩余污泥得到最终资源化利用。  相似文献   

2.
概述了城市污水处理厂剩余污泥中重金属的污染现状,并总结分析了剩余污泥中重金属的治理技术,介绍了污泥重金属的稳定化技术(钝化作用、固化作用、微波固定化作用)以及重金属污染物的去除技术(化学方法、电动修复技术、生物浸滤、植物修复法)。对这些技术的原理以及研究情况进行了综述,并对其技术的特点进行分析,可为污泥重金属污染治理提供理论依据。  相似文献   

3.
花卉植物修复铅污染土壤的研究现状及展望   总被引:4,自引:0,他引:4  
植物修复以其优良的社会、生态和经济效益,成为重金属污染土壤修复的首选措施。从花卉植物对铅的富集能力及其强化措施方面,阐述了利用花卉植物修复铅污染土壤的研究现状,提出了研究中存在的主要问题,并对今后的研究工作进行了展望。  相似文献   

4.
微生物淋滤能够去除剩余污泥中的重金属,并具有成本低、效率高和改善污泥脱水性能等优点,在国内外得到广泛关注。生物淋滤法在硫杆菌等微生物的作用下,将污泥中难溶的金属硫化物氧化成金属硫酸盐溶出;而厌氧酸化淋滤作为新技术,在厌氧酸化阶段通过质子交换和非离子态金属盐溶解使重金属浸出释放,相较于微生物淋滤法无需外加药剂和前处理,具有发展潜力。对包括生物淋滤和厌氧酸化淋滤在内的国内外相关研究进行了归纳,重点介绍了污泥中重金属的存在形态,两种工艺的去除机理以及环境因素对各自淋滤效果的影响,并对淋滤技术在环境污染治理方面的应用前景进行了展望。  相似文献   

5.
随着人口的增长及工业的发展,各类污水量也不断增加。污水在处理过程中产生一定量的剩余污泥,其中含有重金属会造成严重的污染。为了解决剩余污泥污染的问题,该文阐述了剩余污泥污染现状,并在研究剩余污泥重金属存在形态及迁移方式的基础上,提出污染治理措施。  相似文献   

6.
影响活性污泥吸附重金属的因素主要有pH值、吸附温度、吸附时间等,对污泥吸附Cr6+的影响,本文力求通过实验数据,准确分析活性污泥法处理重金属中的影响因素,对影响因子进行筛选,对以后的研究工作做初步的摸索.通过对剩余活性污泥吸附重金属影响因素的研究,可以了解在一定的环境因素下,剩余活性污泥不仅能有效的吸附重金属,而且可以将吸附的重金属再进行回收利用.  相似文献   

7.
谷超  梁隆超  陈卓 《环境工程》2015,33(7):148-151
为研究牧草对红枫湖底泥中复合重金属的修复潜力,采用盆栽试验考察了4种牧草植物对红枫湖底泥中Zn、Cu、Pb、Cd的吸收能力和底泥修复效率的差异。结果表明:种植4种牧草植物后,底泥中重金属Zn、Cu、Pb、Cd含量均有所降低。高羊茅对Zn的吸收能力较强,且主要积累在地上部分;黑麦草对Cu和Pb的吸收能力较强,且主要积累在根系;4种植物对Cd的吸收能力相差不大,除菊苣的Cd主要积累在地上部分外,其余植物都积累在根系。黑麦草对底泥中Cu、Pb和Cd的修复效率高于其他3种植物,分别为38.69%、17.12%和31.68%;高羊茅对底泥中Zn的修复效率相对较高,为55.03%,且其Zn的转移系数大于1,反映出其对红枫湖底泥中Zn具有植物提取的潜力。  相似文献   

8.
植物修复重金属污染土壤的研究进展   总被引:11,自引:0,他引:11  
蔡美芳  刘玉荣  党志 《重庆环境科学》2003,25(11):174-176,180
重金属是土壤中危害极大的一类污染物,目前治理重金属污染方法很多,包括物理、化学和生物方法。由于具有成本低、不破坏土壤结构等优点使得植物修复技术成为生物修复技术中的一个研究热点。本文对近年来国内外在这方面的研究工作做一综述,主要包括以下三方面:金属超积累植物、土壤中重金属的植物可利用性、汞和硒的生物挥发。  相似文献   

9.
植物修复是利用植物吸收、降解、挥发、根滤、稳定等作用机理,达到去除土壤、水体中污染物,或使污染物固定以减轻其危害性,或使污染物转化为毒性较低化学形态的现场治理技术。植物修复对于重金属污染土壤的治理修复具有重要意义。已有研究在累积与超累积植物的寻找筛选、植物对重金属等有害物的耐毒和解毒机理、植物修复现场环境调控及根际处理技术等方面取得了大量成果。  相似文献   

10.
土壤中的重金属污染一直是国际难题。植物修复,利用绿色植物吸附、去除土壤中的重金属或使其无害化。与传统环境修复技术相比,植物修复技术具有治理成本的低廉性,环境美学的兼容性,治理过程的原位性。本文主要对土壤重金属污染植物修复的研究现状与作用机理进行综述。  相似文献   

11.
采用直流电解污泥反应器,在20V稳定电压作用下进行试验,通过采用蒸馏水和添加电解质的蒸馏水为电极液的两套反应器进行对比试验,测定电动过程中污泥工作区pH值、电压降分布和重金属浓度变化情况,研究电动去除城市污泥中重金属过程中不同污泥工作区的污泥性质的变化及重金属去除效果,并确定了能有效去除污泥中高浓度重金属的有效电动工作区。  相似文献   

12.
我国城市污水处理厂污泥中重金属分布特征及变化规律   总被引:5,自引:0,他引:5  
对由中国知网数据库和维普中文科技期刊全文数据库报道的近30年来我国城市污水处理厂污泥中重金属分布特征和年代变化规律进行了分析. 结果表明:近30年来城市污水处理厂污泥中w(Cd)、w(Pb)、w(Cr)、w(As)、w(Hg)、w(Cu)、w(Ni)、w(Zn)平均值或中位值均符合GB 18918─2002《城镇污水处理厂污染物排放标准》中污泥农用时污染物控制标准限值,但数据离散且呈偏态分布. 依据GB 18918─2002,1980─1989年我国城市污水处理厂污泥中重金属质量分数75%分位值中有w(Cd)、w(Cu)、w(Ni)、w(Zn)超标,90%分位值中有w(Cd)、w(Pb)、w(Hg)、w(Cu)、w(Zn)、w(Ni)超标;1990─1999年城市污水处理厂污泥中重金属质量分数75%分位值中w(Ni)超标,90%分位值中除w(As)外其他重金属均超标;2000─2010年城市污水处理厂污泥中重金属质量分数75%分位值中w(Ni)超标,90%分位值中w(Cd)、w(Cr)、w(Hg)、w(Cu)、w(Zn)、w(Ni)超标. 从年代变化看,我国城市污水处理厂污泥中w(Cd)、w(Cu)随年代逐渐下降,但w(Hg)、w(As)、w(Cr)、w(Zn)、w(Ni)、w(Pb)呈波动趋势. 近10年数据表明,我国城市污水处理厂污泥中w(Ni)、w(Cd)、w(Hg)超标倍数最高,在进行污泥处置时需要优先关注.   相似文献   

13.
天冬氨酸和柠檬酸对污泥中重金属萃取的比较研究   总被引:1,自引:1,他引:1  
以天冬氨酸作为萃取剂,研究了其对上海桃浦污水处理厂污泥中重金属的萃取性能,重点考察了萃取体系pH值对重金属萃取的影响,并在相同条件下与柠檬酸的萃取过程进行比较.结果表明,随着萃取体系pH值的升高,重金属的萃取率逐渐降低.在较低pH值时,天冬氨酸对污泥中Zn、Ni及Cu的最高萃取率均大于85%;在整个实验pH值范围内,天冬氨酸对Ni及Cu的萃取率分别达到50%和40%以上.与柠檬酸对污泥中上述3种重金属的萃取结果相比较,天冬氨酸对Ni、Cu的萃取能力更高,而对Zn的萃取能力在pH≥3.0时不如柠檬酸.  相似文献   

14.
污泥堆肥工艺是实现污泥减量化,无害化和资源化的重要手段。文章考察了污泥在堆肥前后四类重金属(铜、锌、铅和镉)形态的变化。结果显示,铜、锌、铅和镉在堆肥前后的总量变化不大,Cu、Zn主要以有机结合态和残渣态形式存在,而Pb、Cd主要以残渣态形式存在。堆肥处理过程中可交换态重金属都呈下降趋势,但各种重金属的可交换态变化幅度不同,以Zn和Cd下降幅度最大,Zn的可交换态由堆肥前的10.5%下降到堆肥后的4.8%;Cd的可交换态从堆肥前的3.2%下降到堆肥后的1.8%,下降比例超过和接近50%。随着向土壤中添加污泥及堆肥量的增加,小麦植株地上和地下部分重金属含量也相应增加,且地下部分含量高于地上部分,小麦中重金属含量在地下部与地上部之间的比值恒定,特别是Pd,Cd的地上和地下部分浓度比可分别达到130和15~20,经堆肥处理的污泥可以降低小麦对其中重金属的吸收。将污泥及堆肥腐熟品添加至石油污染土壤中,与对照相比土壤中的石油烃含量有一定幅度的下降,最大下降幅度为19.6%。处理一个月后重金属含量及其形态变化不大,Zn具有向铁锰氧化态转化的趋势。  相似文献   

15.
城市污水处理厂污泥重金属污染状况及特征   总被引:9,自引:1,他引:9  
研究了我国16家城市污水处理厂污泥中重金属(Cu,Cr,Pb,As和Cd)污染状况及特征,并探讨了可行的污泥处置方法. 结果显示:w(Cu),w(Cr),w(Pb),w(As)和w(Cd)(干基)分别为14.48~239.93,7.86~200.00,6.10~121.00,3.15~11.70和0.31~6.16 mg/kg;不同种类的重金属在污泥中的质量分数也不同,w(Cu)和w(Cr)高于w(Pb),w(As)和w(Cd);污泥中重金属质量分数还随污水处理厂的不同而变化,这与污水来源和污水处理工艺有关. 分析表明,除7号污水处理厂污泥中w(Cd)超出我国农用泥质(CJ/T309—2009)A级污泥、园林绿化用泥质(GB/T23486—2009)和土地改良用泥质(CJ/T291—2008)中酸性土壤(pH<6.5)施用标准外,其他污水处理厂的污泥重金属质量分数均低于我国农用泥质(CJ/T309—2009)A级污泥标准以及美国、德国和欧盟农用污泥标准的重金属控制限值. 达标的污泥可将混合填埋、农用、园林绿化、土地改良、制砖和水泥熟料生产作为污泥处置备选方案.   相似文献   

16.
广州市污水污泥中的重金属及其农用探讨   总被引:3,自引:1,他引:3  
分析了广州市6种污水污泥中重金属(Zn,Cu,Pb,Cr,Mn和Ni)质量分数及其存在形态,并对污泥农业利用过程中施用的最大量进行了估算.结果表明:广州不同来源污水污泥中.(Cu),w(Zn),w(Mn)和,(Ni)较高,变幅较大,而w( Ph )和w( Cr)低.除一种污泥中w(Cu)超标外,其他重金属基本符合国家农用控制标准(G1318918-2002),但所有污泥中重金属质量分数都超过广州市农田土壤平均值.不同重金属以及同一重金属在不同污泥中的形态分布也不同,其中Zn,Mn和Ni的潜在迁移性强,Cu和Cr中的还原态占有很大的比例,污泥中Pb主要以还原态和残渣态存在.根据广州市主要旱地赤红色土壤静态环境容量和动态环境容量计算表明,污泥农用过程中Cu和Zn是主要监控污染元素,不同来源污泥的最大施用量有明显差异.为保证土壤环境的安全,建议将Cu和Zn作为控制城市污水污泥农用过程中最高施用量的计算参考指标.  相似文献   

17.
固体添加剂对污泥焚烧过程中重金属迁移行为的影响   总被引:2,自引:1,他引:2  
刘敬勇  孙水裕  陈涛 《环境科学》2013,34(3):1166-1173
利用高温固定管式炉研究了4种固体添加剂(CaO、Al2O3、粉煤灰和高岭土)对污泥焚烧过程中6种重金属(Pb、Cd、Cu、Cr、Ni、Zn)在底渣中的迁移行为与固化残留特征的影响.结果表明,污泥焚烧过程中4种固体添加剂(CaO、Al2O3、粉煤灰和高岭土)的加入有利于重金属固定并且残留在焚烧底渣中,并且随着固体添加剂添加比例的增多,重金属的残留率也逐渐增加.焚烧温度对固体添加剂吸附重金属的效果有很大影响,其中重金属自身熔点、沸点及重金属在污泥中的赋存形态是决定其挥发性的一个重要因素.不同固体添加剂对不同重金属迁移的抑制效果有很大差异,从控制重金属挥发角度来看,固体添加剂高岭土和CaO要优于其他固体添加剂.固体添加剂活性中心与重金属化合物分子的相互作用取决于这些活性位的分布及重金属的化学性质.  相似文献   

18.
本文通过盆栽试验研究以粉煤灰和污泥混合物为主要添加剂改良石灰岩质退化土壤后对玉米生长发育的影响,并根据重金属富集系数探讨重金属在玉米体内的迁移状况及其生物有效性。试验结果表明:石灰岩质土壤中添加粉煤灰污泥混合物后能显著促进玉米的生长,其养分具有缓慢释放的效果。重金属分析结果显示,不同配比条件下的生长介质中,重金属含量符...  相似文献   

19.
选取黔西北矿渣为研究对象,研究了城市污泥改良矿区重金属污染的可行性和存在的问题,同时在借鉴前人利用污泥的经验基础之上,通过盆栽试验,探讨了纯污泥和不同配比的粉煤灰钝化污泥对铅锌冶炼废渣中重金属有效性的影响,以及不同处理的栽培基质对玉米的生长发育、营养状况和植株中重金属累积的影响,并分析了粉煤灰钝化污泥在矿山土地复垦中的应用前景,以为粉煤灰和污泥的土地利用提供一定的依据,达到既能充分利用这些固体废弃物资源又不污染环境的目的。  相似文献   

20.
污泥屏障氧化缓冲容量与重金属再溶出关系研究   总被引:1,自引:0,他引:1  
张虎元  范志明  王宝  鞠圆圆 《环境科学》2010,31(11):2705-2712
借助微生物厌氧活动特别是硫酸盐还原反应,污泥屏障可用来固定尾矿堆场重金属.针对尾矿风化淋滤形成的酸性采矿废水(AMD)与污泥之间发生的氧化还原反应导致的重金属溶出问题,通过氧化滴定实验研究了不同污泥悬液的氧化缓冲容量及其与重金属浓度的关系.结果表明,污泥悬液的氧化缓冲容量随着悬液固液比的增大略有减小,但随着悬液厌氧培养时间的延长而增加.污泥的氧化缓冲容量主要来自Eh≤-150mV的强烈还原区间,可达氧化缓冲容量的50%以上.氧化滴定过程中发现,当Eh≥-150mV时,Zn首先明显溶出;当Eh≥150mV时,Cu和Pb明显溶出.基于实验结果,建立了污泥屏障在AMD渗流条件下氧化缓冲容量消耗的数学模型.模拟计算结果表明,当AMD水头高度为10m时,厚度2m的污泥屏障经历AMD溶液38787a的渗透氧化,仍可保持原有的强烈还原状态,具备对重金属的固定效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号