首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT

Vertical axis wind turbine (VAWT) is an economic and widely used energy converter for converting wind energy into useful form of energy, like mechanical and electrical energy. For efficient energy conversion in low wind speed and to have improved power coefficient of asymmetric blade VAWT, selection of optimum blade thickness is needed thus entailing its detailed investigation with respect to different operating wind speed conditions. Present study methodically explores the impact of thickness to chord (t/c) ratio on aerodynamic performance of a three bladed asymmetrical blade H-Darrieus VAWT at different low wind speed conditions by using 2D unsteady CFD simulations. The optimal t/c is obtained on the basis of maximum power coefficient and average moment coefficient of the turbine. The aerodynamic performance curves are obtained at different operating and t/c conditions and the performance insights are corroborated with the findings from the flow physics study to come to some concrete conclusions on the effects of the thickness to chord ratio. The present study identifies large blade curvature to create a large diverging passage on the blade suction surface as the prominent reason for aerodynamic performance drop at a high t/c ratio.  相似文献   

2.
In order to improve the aerodynamic performance of horizontal-axis wind turbine (HAWT), a sinusoidal shape is applied to turbine blade. In this study, four types of modified blades were chosen based on variations in amplitude and wavelength of protuberance along the leading edge. Compared with the baseline model, the power coefficients (Cp) of HAWT with modified blades were improved, especially at low tip speed ratios. At low wind speed (V = 6 m/s), blades with short wavelength obtain significant improvement in Cp compared with the baseline model. As wind speed increases, this improvement decreases. In addition, turbine blade with large amplitude and long wavelength obtains better Cp values at higher wind speeds than lower ones, which have a great potential to be more superior at relatively higher wind speeds.  相似文献   

3.
The operation of modern horizontal axis wind turbine (HAWT) includes a number of important factors, such as wind power (P), power coefficient (CP), axial flow induction factor (a), rotational speed (Ω), tip speed ratio (λ), and thrust force (T). The aerodynamic qualities of these aspects are evaluated and discussed in this study. For this aim, the measured data are obtained from the Sebenoba Wind Energy Power Plant (WEPP) that is located in the Sebenoba region in Hatay, Turkey, and a wind turbine with a capacity of 2 MW is selected for evaluation. According to the results obtained, the maximum turbine power output, maximum power coefficient, maximum axial flow induction factor, maximum thrust force, optimum rotational speed, probability density of optimum rotational speed, and optimum tip speed ratio are found to be 2 MW, 30%, 0.091, 140 kN, 16.11 rpm, 46.76%, and 7, respectively. This study has revealed that wind turbines must work under optimum conditions in order to extract as much energy as possible for approaching the ideal limit.  相似文献   

4.
An axial symmetry augmented vertical axis wind turbine, which is suitable for arbitrary wind directions, is proposed in this paper. In order to improve the power generation ability of the S-type vertical axis wind turbine, a set of so-called “collection-shield boards” are installed symmetrically around the rotating S-type rotor. The flow fields around this type of wind turbine are numerically simulated with the aid of CFD method. The optimized design of geometrical parameters of the rotor and collection-shield boards is conducted by using the orthogonal design method. The obtained results suggest that the power output of the optimized augmented wind turbine can reach nearly three times higher than that of the conventional S-type vertical axis wind turbine.  相似文献   

5.
ABSTRACT

In this work, a new airfoil shape optimized for vertical-axis wind turbine applications is proposed. Different airfoil shapes have been analyzed with JavaFoil, a panel method software. Then, the results from the analysis have been used to optimize the performance of the new airfoil shape. Afterward, Computational Fluid Dynamics (CFD) simulations of the proposed airfoil, UO-17-LDA, are run for different angles of attack to provide insight into the flow field and the mechanisms related to this increase in performance. The UO-17-LDA airfoil presents a high lift-to-drag ratio and a delayed stall angle with respect to the original FX-63-137 airfoil, making it suitable for vertical-axis wind turbine applications. This increase in performance has been verified by comparing two VAWT designs with the original and the proposed airfoil using a double-multiple streamtube model. Finally, the practicality of JavaFoil for the comparison of different airfoil geometries has been verified, as it is capable of obtaining results for a wide number of flow conditions in small computational times and with a user-friendly interface. Nevertheless, the results diverge from the actual solution for high angles of attack (beyond stall). Hence, the time and effort required to perform CFD simulations is justified to gain insight into the actual behavior of a particular airfoil, as well as to obtain a richer analysis of the flow field and the mechanisms related to the airfoil performance.  相似文献   

6.
Emissions from electricity generation will have to be reduced to near-zero to meet targets for reducing overall greenhouse gas emissions. Variable renewable energy sources such as wind will help to achieve this goal but they will have to be used in conjunction with other flexible power plants with low-CO2 emissions. A process which would be well suited to this role would be coal gasification hydrogen production with CCS, underground buffer storage of hydrogen and independent gas turbine power generation. The gasification hydrogen production and CO2 capture and storage equipment could operate at full load and only the power plants would need to operate flexibly and at low load, which would result in substantial practical and economic advantages. This paper analyses the performances and costs of such plants in scenarios with various amounts of wind generation, based on data for power demand and wind energy variability in the UK. In a scenario with 35% wind generation, overall emissions of CO2 could be reduced by 98–99%. The cost of abating CO2 emissions from the non-wind residual generation using the technique proposed in this paper would be less than 40% of the cost of using coal-fired power plants with integrated CCS.  相似文献   

7.
To improve the competiveness in the energy market, it is necessary that the wind power plants provide guaranteed power generation, although, it is not possible to forecast power availability from wind power plant accurately. This paper presents a stochastic model and solution technique for the combined operation of wind and pumped storage power plants to improve the power availability and increasing the profit considering uncertainties of wind power generation. In this model, uncertainties in wind data have been forecasted for grid connected day-ahead market using Weibull distribution model. The imbalances in the forecasted wind data and the market demand have been reduced by operating the pumped storage power plant. In this stochastic mixed integer problem, pumped storage plant can take the supply either from the grid or from the wind power plant for the pumping operation to store the energy in order to utilize this energy during peak hours for increasing the overall revenue. The reliability of the pumped storage is improved by replacing the conventional unit with the adjustable speed type pumped storage unit. In order to prove the optimality of the solution, two case studies were considered. In case studyI, scheduling is provided by operating the conventional pumped storage unit, whereas in case studyII, adjustable speed pumped storage unit has been used. It has been found that the adjustable speed pumped storage unit has further reduced the imbalance between generated power and demand. The complete approach has been formulated and implemented using AMPL software.  相似文献   

8.
The main purpose of this paper is to study the aerodynamic effects of blade tip tilting on power production of horizontal-axis wind turbines by using Computational Fluid Dynamics (CFD). For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier–Stokes Equations are solved and different turbulence models including the Spalart–Allmaras, Standard k-?, k-? Yang–Shih and SST k–ω models are used and tested. The results are shown in terms of power generation at different wind speeds and the pressure distribution at different sections of the blade, and the comparisons are made with the available experimental data. For tip tilting analysis, 16 different geometries belonging to four different configurations are studied. The geometries are generated based on changing the twist and the cant angles of the winglet. The four different configurations are obtained from tilting the blade tip toward pressure side, suction side, leading edge, and trailing edge. The effect of the different configurations on the flow characteristics and hence on the power production of the wind turbine is investigated.  相似文献   

9.
Rapid development of wind energy has been witnessed in Thailand. However, different wind resource maps (over land) have brought great uncertainty to wind energy planning. Here, four important mesoscale wind maps were considered: DEDP (2001), World Bank (2001), Manomaiphiboon et al. (2010) of JGSEE, and DEDE (2010). The wind maps were first harmonized to a common grid at 100 m and then compared. The earlier wind maps (DEDP and World Bank) are shown to represent the lower and upper limits of predicted speed, respectively, while JGSEE and DEDE tend to be more moderate with predictions statistically closer to observations. A consolidated wind map was constructed based on their median and shown to have the best prediction performance. It was then used for the technical potential analysis, in which three large (2-MW) turbine models (two conventional and one designed for low wind speed) were considered. By GIS techniques, any land areas not feasible for large wind turbines were excluded, and the corresponding overall onshore technical potential ranges between 50 and 250 GW, depending on map and turbine model. Considering only economically feasible turbines (with capacity factors of 20%) and the median-based map, the final technical potential equals 17 GW when using the low-wind-speed model but is reduced to 5 GW with the conventional models, adequately meeting the national wind energy target of 3 GW by the year 2036. The results suggest a strong sensitivity of estimated technical potential to turbine technology and a suitability of low-wind-speed turbines for wind conditions in Thailand.  相似文献   

10.
A common characteristic of carbon capture and storage systems is the important energy consumption associated with the CO2 capture process. This important drawback can be solved with the analysis, synthesis and optimization of this type of energy systems. The second law of thermodynamics has proved to be an essential tool in power and chemical plant optimization. The exergy analysis method has demonstrated good results in the synthesis of complex systems and efficiency improvements in energy applications.In this paper, a synthesis of pinch analysis and second law analysis is used to show the optimum window design of the integration of a calcium looping cycle into an existing coal power plant for CO2 capture. Results demonstrate that exergy analysis is an essential aid to reduce energy penalties in CO2 capture energy systems. In particular, for the case of carbonation/calcination CO2 systems integrated in existing coal power plants, almost 40% of the additional exergy consumption is available in the form of heat. Accordingly, the efficiency of the capture cycle depends strongly on the possibility of using this heat to produce extra steam (live, reheat and medium pressure) to generate extra power at steam turbine. The synthesis of pinch and second law analysis could reduce the additional coal consumption due to CO2 capture 2.5 times, from 217 to 85 MW.  相似文献   

11.
ABSTRACT

Human-induced climate change through the over liberation of greenhouse gases, resulting in devastating consequences to the environment, is a concern of considerable global significance which has fuelled the diversification to alternative renewable energy sources. The unpredictable nature of renewable resources is an impediment to developing renewable projects. More reliable, effective, and economically feasible renewable energy systems can be established by consolidating various renewable energy sources such as wind and solar into a hybrid system using batteries or back-up units like conventional energy generators or grids. The precise design of these systems is a critical step toward their effective deployment. An optimal sizing strategy was developed based on a heuristic particle swarm optimization (PSO) technique to determine the optimum number and configuration of PV panels, wind turbines, and battery units by minimizing the total system life-cycle cost while maximizing the reliability of the hybrid renewable energy system (HRES) in matching the electricity supply and demand. In addition, by constraining the amount of conventional electricity purchased from the grid, environmental concerns were also considered in the presented method. Various systems with different reliabilities and potential of reducing consumer’s CO2 emissions were designed and the behavior of the proposed method was comprehensively investigated. An HRES may reduce the annualized cost of energy and carbon footprint significantly.  相似文献   

12.
Wind is one of the fastest growing renewable energy resources in the electric power system. Availability of wind energy is volatile in nature due to the stochastic behavior of wind speed and non-linear variation of the wind power curve of wind turbine generator. Because of this impression and uncertainty, the availability estimation of wind power has become a challenging issue. In this paper, Markov Fuzzy Reward technique has been proposed for finding out the reliability of wind farm by assessing the availability of wind power. According to this technique, availability of the wind power has been estimated considering wind farm and demand both as a multi-state system. In addition to the availability, different reliability indices such as the number of absolute failures, mean time to deficiency, and probability of failures of a wind farm have been assessed in a time horizon, which can provide useful information for the power system planner at wind farm installing stage. A comparison of this study reveals the efficacy of the proposed Markov Fuzzy Reward approach over the conventional Markov Reward approach.  相似文献   

13.
In this paper Molten Carbonate Fuel Cells (MCFCs) are considered for their potential application in carbon dioxide separation when integrated into natural gas fired combined cycles. The MCFC performs on the anode side an electrochemical oxidation of natural gas by means of CO32? ions which, as far as carbon capture is concerned, results in a twofold advantage: the cell removes CO2 fed at the cathode to promote carbonate ion transport across the electrolyte and any dilution of the oxidized products is avoided.The MCFC can be “retrofitted” into a combined cycle, giving the opportunity to remove most of the CO2 contained in the gas turbine exhaust gases before they enter the heat recovery steam generator (HRSG), and allowing to exploit the heat recovery steam cycle in an efficient “hybrid” fuel cell + steam turbine configuration. The carbon dioxide can be easily recovered from the cell anode exhaust after combustion with pure oxygen (supplied by an air separation unit) of the residual fuel, cooling of the combustion products in the HRSG and water separation. The resulting power cycle has the potential to keep the overall cycle electrical efficiency approximately unchanged with respect to the original combined cycle, while separating 80% of the CO2 otherwise vented and limiting the size of the fuel cell, which contributes to about 17% of the total power output so that most of the power capacity relies on conventional low cost turbo-machinery. The calculated specific energy for CO2 avoided is about 4 times lower than average values for conventional post-combustion capture technology. A sensitivity analysis shows that positive results hold also changing significantly a number of MCFC and plant design parameters.  相似文献   

14.
ABSTRACT

Climate change has increased the need for clean, nonpolluting energy sources to decrease dependence on fossil fuels. Alternative energy sources, mainly solar and horizontal wind, have been the primary focus for producing clean energy. New technologies are being developed, such as the Solar Vortex (SoV), which was developed at the Georgia Institute of Technology, and relies on a vertical wind resource to generate power. The National Renewable Energy Lab (NREL) has resource models representing solar and horizontal wind resources across the 48 United States. This research developed a vertical wind resource model that is comparable in resolution to NREL’s solar and horizontal wind resource models and uses the model for estimating power output for the SoV. This model complements NREL’s existing resource models and supports the deployment of an additional clean energy generation technology. The model was applied to Mesa, Arizona to find feasible sites for a small-scale vertical wind farm.  相似文献   

15.
A semi-commercial 10 MWth chemical looping combustion (CLC) plant for power production is proposed as a next scale demonstration plant after successful operation of a 120 kW CLC pilot rig. The design criteria for the CLC boiler are derived from the experience obtained from the CLC pilot rig at Vienna University of Technology. The IPSEpro simulation environment is chosen for implementation of the process flow sheet of the CLC power plant. A single pressure steam cycle is suggested for this small scale demonstration plant. Heat exchangers and a five-stage steam turbine are arranged. Basic design parameters of the power plant are derived from detailed mass and energy investigations and discussed. It turns out that the net electric efficiency of such a small scale plant can be expected to be in the range of 32.5–35.8%. However, a demonstration of CLC at such a scale is necessary in order to gain confidence in more sophisticated CLC power generation concepts at larger scale.  相似文献   

16.
Studies of wind direction receive less attention than that of wind speed; however, wind direction affects daily activities such as shipping, the use of bridges, and construction. This research aims to study the effect of wind direction on generating wind power. A finite mixture model of the von Mises distribution and Weibull distribution are used in this paper to represent wind direction and wind speed data, respectively, for Mersing (Malaysia). The suitability of the distribution is examined by the R2 determination coefficient. The energy analysis, that is, wind power density, only involves the wind speed, but the wind direction is vital in measuring the dominant direction of wind so that the sensor could optimize wind capture. The result reveals that the estimated wind power density is between 18.2 and 25 W/m2, and SSW is the most common wind direction for this data.  相似文献   

17.
This article is concerned with control issues related to the design of a semi-closed O 2/CO 2 gas turbine cycle for CO 2 capture. Some control strategies and their interaction with the process design are discussed. One control structure is implemented on a dynamic simulation model using a predictive controller, and simulations assess the performance and compare its merits with a conventional PI structure. The results indicate that it can be advantageous for operability to allow a varying (as opposed to fixed) compressor inlet pressure, at the cost of a more expensive design. Furthermore, the results show that a predictive controller has some advantages with respect to the simpler conventional PI control structure, in particular in terms of constraint handling.  相似文献   

18.
In this paper, the power output of the cycle is taken as objective for performance optimization of an irreversible regenerated closed Brayton cycle coupled to constant-temperature thermal energy reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power output and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, and the pressure drop loss in the piping. The maximum power output optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power output among the hot- and cold-side heat exchangers and the regenerator for the fixed total heat exchanger inventory. The influence of some design parameters, including the temperature ratio of the heat reservoirs, the total heat exchanger inventory, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution and the maximum power output are provided. The power plant design with optimization leads to smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers and the regenerator.  相似文献   

19.
This paper presents a theoretical comparison between fuel cell (FC) power train and conventional petrol driven propulsion system. FC has potential to reduce the CO2-emissions from road. However, FC power trains require energy storing device, to meet the peak power during extreme drive situations and also able to recover the kinetic energy of the vehicle during break operation. The proposed system includes a polymer electrolyte membrane fuel cell (PEMFC) based drive train and a super capacitor connected in parallel. The system is designed and dimensioned for a conventional petrol driven propulsion system of the Mercedes B-Class160. The feasibility study also includes comparison between the existing conventional systems. It is shown that although FC power train is heavier compared to existing system, urban performance is better and produces no CO2 and other harmful emissions.  相似文献   

20.
ABSTRACT

Firstly, on the basis of literature research, sort out and summarize the critical coupling relationship among the upstream, middle, and downstream enterprises in the wind power industry chain. Secondly, the evaluation index system of coupling coordination degree of China’s wind power industry chain was established. Based on entropy weight method and subsystem efficiency function, the capacity coupling (CC) coefficient model of wind power industry chain subsystem was established. The coupling coordination degree between the upstream subsystem and the midstream subsystem of the wind power industry chain, and between the midstream subsystem and the downstream subsystem is dynamically evaluated, and the coupling coordination degree evaluation model of the wind power industry chain in China is proposed. Thirdly, according to the relevant statistical data of China from 2010 to 2017, this paper conducts an empirical study on the coupling of the upstream, middle and downstream subsystems of the wind power industry chain. Finally, based on the collaborative coupling study of China’s wind power industry chain, this paper analyzes the key factors influencing the collaborative development of wind power industry chain, and puts forward Suggestions on the optimization of the collaborative development of China’s wind power industry chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号