首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

Vertical axis wind turbine (VAWT) is an economic and widely used energy converter for converting wind energy into useful form of energy, like mechanical and electrical energy. For efficient energy conversion in low wind speed and to have improved power coefficient of asymmetric blade VAWT, selection of optimum blade thickness is needed thus entailing its detailed investigation with respect to different operating wind speed conditions. Present study methodically explores the impact of thickness to chord (t/c) ratio on aerodynamic performance of a three bladed asymmetrical blade H-Darrieus VAWT at different low wind speed conditions by using 2D unsteady CFD simulations. The optimal t/c is obtained on the basis of maximum power coefficient and average moment coefficient of the turbine. The aerodynamic performance curves are obtained at different operating and t/c conditions and the performance insights are corroborated with the findings from the flow physics study to come to some concrete conclusions on the effects of the thickness to chord ratio. The present study identifies large blade curvature to create a large diverging passage on the blade suction surface as the prominent reason for aerodynamic performance drop at a high t/c ratio.  相似文献   

2.
An axial symmetry augmented vertical axis wind turbine, which is suitable for arbitrary wind directions, is proposed in this paper. In order to improve the power generation ability of the S-type vertical axis wind turbine, a set of so-called “collection-shield boards” are installed symmetrically around the rotating S-type rotor. The flow fields around this type of wind turbine are numerically simulated with the aid of CFD method. The optimized design of geometrical parameters of the rotor and collection-shield boards is conducted by using the orthogonal design method. The obtained results suggest that the power output of the optimized augmented wind turbine can reach nearly three times higher than that of the conventional S-type vertical axis wind turbine.  相似文献   

3.
ABSTRACT

Advanced wind turbine designs and technologies have been evolved to take advantage of wind energy. Despite the significant progress already attained, the need for a dependable wind energy converter particularly devoted to small-scale applications remains a challenging issue. Due to its design simplicity, Savonius wind turbine is the most suitable candidate for such applications. It operates at low wind speed, with the necessary starting capacity and insensitivity to wind directions. Moreover, in the literature related to wind energy, the Savonius rotor is known for its low performance compared to other types of wind turbines. In this paper, we present a study into the utilization of Bézier curves and transient computational fluid dynamics (CFD) to optimize the conventional Savonius blade design. The k-ω SST turbulence model is employed to perform a series of CFD simulations in order to assess the power coefficient of each generated design. A validation of optimization results using the Taguchi method was carried out. The comparative analysis of the torque and power coefficients shows a significant increase in the power coefficient (Cp). The optimal Cp is 0.35 and is 29% higher than the conventional Savoniu wind turbine (SWT). Subsequently, the effectiveness of the innovative geometry is proved by improved pressure and velocity distributions around blades of novel design.  相似文献   

4.
ABSTRACT: Wind driven raindrop tracking is used to investigate the microscale redistribution of wind driven rainfalls in street canopies by combining a Eulerian wind flow model and a Lagrangian raindrop tracking model. The former conducts large eddy simulations of the turbulent flows in street canopies, and the latter performs raindrop trajectory calculations by releasing a large number of raindrops into the computational domain. The wind speed model is verified with available wind tunnel measurement. Twenty sets of simulations are carried out for various building configurations and driving rain angles. The simulated results show that the trajectories of smaller raindrops are more slanting and more influenced by the multibuilding perturbed flow field. Impingement of raindrops on the building envelope increases from bottom to top. The height of the front building is a significant factor affecting wind driven rain redistribution. Distinct nonuniform spatial rainfall distributions are found for scenarios with high building configurations and low driving rain angles. The simulated results are further integrated to assess the effect of real raindrop size distributions by weighing the volumetric fraction of a range of drop sizes. There is about 10 percent variation in spatial extent of street canopies. An overall 5 to 17.4 percent increase of the rainfall amount in the upwind zone is observed.  相似文献   

5.
The main purpose of this paper is to study the aerodynamic effects of blade tip tilting on power production of horizontal-axis wind turbines by using Computational Fluid Dynamics (CFD). For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier–Stokes Equations are solved and different turbulence models including the Spalart–Allmaras, Standard k-?, k-? Yang–Shih and SST k–ω models are used and tested. The results are shown in terms of power generation at different wind speeds and the pressure distribution at different sections of the blade, and the comparisons are made with the available experimental data. For tip tilting analysis, 16 different geometries belonging to four different configurations are studied. The geometries are generated based on changing the twist and the cant angles of the winglet. The four different configurations are obtained from tilting the blade tip toward pressure side, suction side, leading edge, and trailing edge. The effect of the different configurations on the flow characteristics and hence on the power production of the wind turbine is investigated.  相似文献   

6.
重点论述了柴油机冷启动辅助装置燃油加热器的选型试验。对燃油加热器优劣的评价指标进行了分析研究,提出了燃油加热器的评价方法。最后通过样本CFD分析,优化了燃油加热器与发动机之间水路系统的匹配,实际效果进行了试验验证。  相似文献   

7.
Recently, researches on pump as turbine (PAT) have been one of the hot issues in fluid machineries. Of these hydraulic turbines, multi-stage PATs are widely used in industrial fields. However, most attentions have been paid on performance of the single-stage PATs and the turbines themselves. In this paper, a potential multi-stage PAT system with load pump was investigated numerically and experimentally. The match relations between PAT and load pump were explored by theory, and an analytical method to predict performance of PAT system was proposed in addition. Computational fluid dynamics method (CFD) was adopted to study the performance characteristics of PAT under a constant rotation or certain head. The operational rules of multi-stage PAT system were analyzed in both constant and variable speed that confirmed the prediction of system performance. The results could give guidance to choose a proper load pump and promote efficiency of PAT system.  相似文献   

8.
Wind is one of the fastest growing renewable energy resources in the electric power system. Availability of wind energy is volatile in nature due to the stochastic behavior of wind speed and non-linear variation of the wind power curve of wind turbine generator. Because of this impression and uncertainty, the availability estimation of wind power has become a challenging issue. In this paper, Markov Fuzzy Reward technique has been proposed for finding out the reliability of wind farm by assessing the availability of wind power. According to this technique, availability of the wind power has been estimated considering wind farm and demand both as a multi-state system. In addition to the availability, different reliability indices such as the number of absolute failures, mean time to deficiency, and probability of failures of a wind farm have been assessed in a time horizon, which can provide useful information for the power system planner at wind farm installing stage. A comparison of this study reveals the efficacy of the proposed Markov Fuzzy Reward approach over the conventional Markov Reward approach.  相似文献   

9.
The flow of sediment particles in rivers is a big challenge to develop hydropower plants across the sediment-laden rivers. Hard particles such as quartz and feldspar are available in high amount in the Asian mountain range. The abrasive action of these particles causes the hydro turbines to suffer from erosion in particular at high- and medium-head hydroelectric power plants. This has become a serious economic issue due to maintenance costs and production losses. The treatment without prevention is simply unsustainable. Facilities for sediment exclusion, typically sand traps as well as turbine design, and materials have been improved considerably. In the present paper, studies have been discussed extensively undertaken by several investigators in this field. Based on literature survey several aspects related to reducing the sediment load on turbines, useful ways to improve the turbine surface performance and various erosion models to characterize the effect of erosion on the performance of turbines have been discussed. To calibrate and validate the developed erosion models, more measurements from both physical model tests in laboratories and continuous monitoring of sediment parameters and their impact on the operational hydro turbines are required. As well as the state-of-art in the modeling and simulation using computational fluid dynamics (CFD) has made it possible to optimize the hydraulic design of hydro turbines in order to minimize the erosion level without much sacrifice in the efficiency. To mitigate the hydro-abrasive erosion effects on the performance of turbines, significant improvements have been achieved so far and development is ongoing.  相似文献   

10.
Rapid development of wind energy has been witnessed in Thailand. However, different wind resource maps (over land) have brought great uncertainty to wind energy planning. Here, four important mesoscale wind maps were considered: DEDP (2001), World Bank (2001), Manomaiphiboon et al. (2010) of JGSEE, and DEDE (2010). The wind maps were first harmonized to a common grid at 100 m and then compared. The earlier wind maps (DEDP and World Bank) are shown to represent the lower and upper limits of predicted speed, respectively, while JGSEE and DEDE tend to be more moderate with predictions statistically closer to observations. A consolidated wind map was constructed based on their median and shown to have the best prediction performance. It was then used for the technical potential analysis, in which three large (2-MW) turbine models (two conventional and one designed for low wind speed) were considered. By GIS techniques, any land areas not feasible for large wind turbines were excluded, and the corresponding overall onshore technical potential ranges between 50 and 250 GW, depending on map and turbine model. Considering only economically feasible turbines (with capacity factors of 20%) and the median-based map, the final technical potential equals 17 GW when using the low-wind-speed model but is reduced to 5 GW with the conventional models, adequately meeting the national wind energy target of 3 GW by the year 2036. The results suggest a strong sensitivity of estimated technical potential to turbine technology and a suitability of low-wind-speed turbines for wind conditions in Thailand.  相似文献   

11.
The operation of modern horizontal axis wind turbine (HAWT) includes a number of important factors, such as wind power (P), power coefficient (CP), axial flow induction factor (a), rotational speed (Ω), tip speed ratio (λ), and thrust force (T). The aerodynamic qualities of these aspects are evaluated and discussed in this study. For this aim, the measured data are obtained from the Sebenoba Wind Energy Power Plant (WEPP) that is located in the Sebenoba region in Hatay, Turkey, and a wind turbine with a capacity of 2 MW is selected for evaluation. According to the results obtained, the maximum turbine power output, maximum power coefficient, maximum axial flow induction factor, maximum thrust force, optimum rotational speed, probability density of optimum rotational speed, and optimum tip speed ratio are found to be 2 MW, 30%, 0.091, 140 kN, 16.11 rpm, 46.76%, and 7, respectively. This study has revealed that wind turbines must work under optimum conditions in order to extract as much energy as possible for approaching the ideal limit.  相似文献   

12.
This work proposes nonlinear estimators with nonlinear controllers, for variable speed wind turbine (VSWT) considering that either the wind speed measurement is not available or not accurate. The main objective of this work is to maximize the energy capture from the wind and minimizes the transient load on the drive train. Controllers are designed to adjust the generated torque for maximum power output. Estimation of effective wind speed is required to achieve the above objectives. In this work the estimation of effective wind speed is done by using the Modified Newton Rapshon (MNR), Neural Network (NN) trained by different training algorithms and nonlinear time series based estimation. Initially the control strategies applied was the classical ATF (Aerodynamic torque feed forward) and ISC (Indirect speed control), however due their weak performance and unmodeled WT disturbances, nonlinear static and dynamic feedback linearization techniques with the above wind speed estimators are proposed.  相似文献   

13.
This study was a basic one to explore how much the aerodynamic characteristics of wind blade improve. The extent of improvement according to the shapes of groove placed on the surface of airfoil (NACA0015) was analyzed through computational analysis. A commercial computational fluid dynamics (CFD) code, the ANSYS Fluent 13, was used in this study. In this study, regarding with the positions and shapes of groove, the end of groove was placed at a certain distance (length, l) from both the front and back of separation starting point, the depth and the width were designated as h and d respectively. Analysis was conducted at the 7° angle of attack under the following conditions; the thickness (δ) of boundary layer to the depth (h) of groove ratio (h/δ) 0.6–1.0, the depth (h) of groove to the width (d) of groove ratio (h/d) 0.1–1.4, and the length (l) between the end of groove and separation point to the thickness (δ) of boundary layer ratio (l/δ) ?0.5–0.5. Among these conditions, the best improvement of lift to drag ratio, standing at 15.3%, was under h/δ = 1.0, h/d = 0.12, and l/δ = –0.5 (7° AOA, Re = 360k). In addition, throughout the range of angle of attack, 2–14°, lift to drag ratio improved by 0.8%, 5.1%, 3.2%, and 1.8% each when Reynolds numbers were 280k, 360k, 450k, and 530k. It is also confirmed that the shape of groove contributed to recovering velocity around airfoil wall and the lift to drag ratio improvements by groove were maintained at the given range of Reynolds number and around the angle of attack, 7°.  相似文献   

14.
In order to improve the aerodynamic performance of horizontal-axis wind turbine (HAWT), a sinusoidal shape is applied to turbine blade. In this study, four types of modified blades were chosen based on variations in amplitude and wavelength of protuberance along the leading edge. Compared with the baseline model, the power coefficients (Cp) of HAWT with modified blades were improved, especially at low tip speed ratios. At low wind speed (V = 6 m/s), blades with short wavelength obtain significant improvement in Cp compared with the baseline model. As wind speed increases, this improvement decreases. In addition, turbine blade with large amplitude and long wavelength obtains better Cp values at higher wind speeds than lower ones, which have a great potential to be more superior at relatively higher wind speeds.  相似文献   

15.
A solar still of a single basin-slope coupled with a finned condensing chamber and installed thermoelectric modules at the bottom of the water basin has been presented in this paper. A mathematical model under steady state conditions has been introduced and improved to investigate the system performance. An increase of solar radiation and ambient temperature or a decrease in wind velocity affect positively the distillation rate, the still efficiency, and the system efficiency. Integrating a condenser and finned condenser increases the distillation rate of the proposed system. The results of the simulation have been verified by comparing them with published theoretical and experimental results, and the comparison shows very good agreement.  相似文献   

16.
In this paper, computational modeling is created for 3 MW wind turbine blade using the software Solidworks, and the computations are carried out using Workbench for the fluid–structure interaction of blades due to both the rated and the extreme wind load. The methods developed are applied to the simulation of the NREL Phase VI wind turbine blades, and validation against published data is presented. Moreover, the static structural analysis for wind turbine rotor is performed using Mechanical APDL. The results show that the maximum values of stress reach 458 MPa and 76.9 MPa due to the rated and extreme wind load, respectively, which are lower than 78.3 MPa, the flexural strength of Swancor 2511-A epoxy resin for blade material.  相似文献   

17.
Artificially roughened solar air heater has been topic in research for the last 30 years. Prediction of heat transfer and fluid flow processes of an artificially roughened solar air heater can be obtained by three approaches: theoretical, experimental, and computational fluid dynamics (CFD). This article provides a comprehensive review of the published literature on the investigations of artificially roughened solar air heater. In the present article, an attempt has been made to present holistic view of various roughness geometries used for creating artificial roughness in solar air heater for heat transfer enhancement. This extensive review reveals that quite a lot of work has been reported on design of artificially roughened solar air heater by experimental approach but only a few studies have been done by theoretical and CFD approaches. Finally this article presents a comparative study of thermo-hydraulic performance of 21 different types of artificial roughness geometries attached on the absorber plate of solar air heater in terms of thermo-hydraulic performance parameter. Heat transfer and friction factor correlations developed by various investigators for different types of artificially roughened solar air heaters have also been reported in this article.  相似文献   

18.
长期工作在西北地区大温差、多风砂和强紫外线等恶劣复杂环境下的雷达装备表面极易出现表面磨蚀或损坏。建立了雷达对西北地区综合环境适应性的仿真分析方法,以计算流体动力学(CFD)软件FLUENT为平台,对雷达典型部件在大温差、多风砂和强紫外线环境中的表面状态进行仿真模拟。仿真结果与雷达装备实际情况较为吻合,为进一步深入研究相关物理机理以及设计防护措施提供了理论依据。  相似文献   

19.
A three-dimensional numerical simulation on a highly loaded transonic rotor with zero, 0.2 mm, 0.3 mm, and 0.5 mm tip gap, respectively, is performed in this article. The flowfields above 60% span of transonic rotors are affected by leakage flow, but the stall margin of rotor has obviously improved with small tip gap. Typical leakage vortex structures with double cores are generated by the interaction of incoming flow, leakage flow, and second flow in flowfields, and then the two vortex cores merge into a stronger one in front of shock. The shape of passage shock changes seriously by strong leakage vortex after interaction and a large low-velocity region generates behind shock in tip region. The blockage, produced by leakage flow and boundary layer separation, induces detached shock wave near leading edge of rotors and triggers the rotating stall of compressor. However, with tip gap increasing, the blockage produced by leakage flow tends to be dominant in occurrence of rotating stall. Once the tip clearance adds to 0.5 mm, vortex breakdown in tip region of rotor appears and the flow deteriorates drastically, which aggravates the onset of stall in rotor.  相似文献   

20.
This paper investigates the accuracy of the wind resource estimation for a site in a central India region using a latest licensed version of WAsP 11 and windPRO 3.1. Whole one year measured met mast wind data has been taken using anemometer and wind vane at 10 m and 25 m height, respectively above ground level. The digitized elevation and roughness model of the corresponding site shows the roughness class 4 (roughness length 1.2525 m). The wind data has been extrapolated up to 80 m height by using power and log law models which provide the power density near about 120 W/m2. As per the micro sitting guidelines for the virtual wind farm installation 5D X 7D mapping has been selected which Indicates the total power output by installing 8 Vestas V-90 1.8 MW wind turbine from WAsP is 31.561 GWh and from windPRO is 28.083 GWh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号