首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A diesel particulate filter (DPF) can effectively reduce the exhaust emissions of particulate matter (PM) and meet emission regulations. We report herein an experimental-numerical study to investigate the soot capture and regeneration behavior in a commonly used DPF. Simulations are performed using the AVL FIRE software that considers a fairly detailed DPF model. The model is validated using measured pressure drop history during soot capture, and temperature history during regeneration from a parallel experimental study using a diesel engine equipped with a DPF. Then, a detailed numerical study is performed to examine the soot capture and heat regeneration processes, and characterize the effects of various parameters on these processes and on DPF performance. Results indicate that the pressure drop during soot loading can be reduced by increasing the CPSI (channels per square inch), minimizing the amount of residual soot in each regeneration cycle, and using moderate gas flow rates. The DPF regeneration performance is characterized in terms of the rates of temperature rise and soot oxidation. Results indicate that these rates are enhanced, as the oxygen content in the exhaust stream is increased to about 12%, the rate of thermal heating is moderately increased, and as the exhaust gas flow rate is increased. Thus, the regeneration efficiency can be significantly improving by optimizing these parameters.  相似文献   

2.
A passive flat-plate solar air collector was constructed in the laboratory of New and Renewable Energy in Arid Zones, Ouargla University, South East Algeria. The absorber of the passive flat-plate solar air collector was laminated with a thin layer of local sand. This acted as a thermal packed bed with a collecting area of 0.5 m2 (1 m × 0.5 m). Three series of experiments were performed. The first consisted of choosing the best sand brought from three different places of the Algerian desert. The second consisted of studying the effect of the thickness of the sand layer on the daily efficacy of the collector. The influence of the sand diameter was investigated in the third series. The experimental results showed that: All collectors covered with sand had higher efficiency than those without. It was noticed that, for a fixed mass of sand (given thickness of the sand layer), the improvement of the collector was inversely proportional to the sand particle diameters. The maximum efficiency approximates 62.1% for a particle diameter 0.063 mm, compared to 41.71% for a diameter 0.250 mm.The efficiency of the collector for a fixed particle diameter increases with the increase in the thickness of the sand layer. The collector with thickness sand layer 0.84 mm gave the best efficiency of 46.14% compared to 27.8% for 0.28 mm of thickness sand layer.  相似文献   

3.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

4.
综述了用于水处理领域的活性炭再生技术研究进展;分析了目前活性炭各种再生方法的优缺点,包括热再生、化学药剂再生、生物再生、电化学再生、超声波再生、催化湿式氧化再生和超临界流体再生等方法;介绍了活性炭再生的多种新技术,认为一种活性炭再生的新方法—超声波+电化学再生法有可能在未来挑战传统技术。  相似文献   

5.
ABSTRACT: During waning flood flows in gravel-bed streams, finegrained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes available to fill pools. The volume of fine sediment in pools can be measured by probing with a metal rod, and, when expressed as the fraction (V*) of scoured residual pooi volume (residual pool volume with fine sediment removed), can be used as an index of the supply of mobile sediment in a stream channel. Mean values of V* were as high as 0.5 and correlated with qualitative evaluations of sediment supply in eight tributaries of the Trinity River, northwestern California. Fine-sediment volume correlated strongly with scoured pool volume in individual channels, but plots of V* versus pool volume and water surface slope revealed secondary variations in fines volume. In sediment-rich channels, V* correlated positively with scoured pool volume; in sediment-poor channels, V* correlated negatively with water-surface slope. Measuring fine sediment in pools can be a practical method to evaluate and monitor the supply of mobile sediment in gravel-bed streams and to detect and evaluate sediment inputs along a channel network.  相似文献   

6.
In the carbonate soils contaminated by a toxic spill from a pyrite mine (Aznalcóllar, southern Spain), a study was made of a thin layer (thickness = 4 mm) of polluted soil located between the pyrite tailings and the underlying soil. This layer, reddish-yellow in color due to a high Fe content, formed when sulfates (from the oxidation of sulfides) infiltrated the soil, causing acidification (to pH 5.6 as opposed to 8.0 of unaffected soil) and pollution (in Zn, Cu, As, Pb, Co, Cd, Sb, Bi, Tl, and In). The less mobile elements (As, Bi, In, Pb, Sb, and Tl) concentrated in the uppermost part of the reddish-yellow layer, with concentration decreasing downward. The more mobile elements (Co, Cd, Zn, and Cu) tended to precipitate where the pH was basic, toward the bottom of the layer or in the upper part of the underlying soil. The greatest accumulations occurred within the first 6 mm in overall soil depth, and were negligible below 15 mm. In addition, the acidity of the solution from the tailings degraded the minerals of the clay fraction of the soils, both the phyllosilicates as well as the carbonates. Also, within the reddish-yellow layer, gypsum formed autigenically, together with complex salts of sulfates of Fe, Al, Zn, Ca, and Mn, jarosite, and oxihydroxides of Fe.  相似文献   

7.
ABSTRACT

Al2O3/water nanofluid has been numerically examined for the first time with different nanoparticle shapes including, cylindrical, blade, brick, platelet and spherical, on the flat and triangular-corrugated impinging surfaces. The volume fractions of 1.0%, 2.0% and 3.0% nanoparticles have been used. The Reynolds number is between 100–500 depending on the slot diameter. The finite volume method is utilized to determine the governing equations. The study is analyzed to determine how the flow features, heat transfer features and entropy production were affected by the diversity of nanoparticle shape, nanoparticle volume fraction, and shape of impinging surface. Darcy friction factor and Nusselt number are studied in detail for different conditions. The temperature contours are presented in the case of different nanoparticle volume fractions, nanoparticle shapes and both impinging surfaces. The results of the study suggest that the nanoparticle shape of the platelet shows the highest heat transfer development due to the thinner thermal boundary layer. Heat transfer augments with increasing volume fraction of nanoparticles. In addition, the study is consistent with the results of the literature on heat transfer and flow properties.  相似文献   

8.
将生物接触氧化技术用于油田稠油污水的处理,在三级串联运行的生物接触氧化池中,生物膜特性主要由生物膜上原油成分决定。在沿水流方向上,生物膜上易降解原油组分含量降低,难降解组分含量上升,第一级生化池中的生物膜厚度和优势菌种数量明显超过第二级和第三级,藻类主要生长在一级生化池的后部和二、三级生化池中的生物膜上,原生动物出现在二级和三级生化池生物膜上,而后生动物只出现在三级生化池生物膜上。  相似文献   

9.
Electrospun cellulose acetate (CA) nanofibrous mats incorporated with capric acid was studied to fabricate form-stable phase change materials (PCMs) for storing/retrieving thermal energy. Electrospun CA nanofibrous mats with different porous structures and specific surface areas were firstly prepared through regulating the volume ratio of mixture solvent of acetone/dichloromethane (DCM). Effects of different volume ratio of mixture solvent and mat thickness on the morphological structure, specific surface area, and absorption capacity of CA nanofibrous mats were systematically investigated. The results indicated that CA nanofibrous mats were highly porous on the surface; hence, they were capable of absorbing a large amount of capric acid. The maximum absorption capacity of CA mats via electrospinning with volume ratio of acetone/DCM being 5/5 was ~95.8 wt%, due to its higher specific surface area of ~17.1 m2/g. The specific surface area and capric acid absorption capacity of CA nanofibrous mats increased with the increases of mat thickness. As the thickness of nanofibrous mats increased from 10 to 85 μm, the corresponding specific surface area and capric acid absorption capacity of mats increased respectively from 7.2 to 29.0 m2/g and 92.1 to 98.5%. Morphological structures, as well as the properties of thermal energy storage and thermal insulation of the fabricated form-stable PCMs, were studied by scanning electron microscopy, differential scanning calorimetry, and measurement of freezing times, respectively. The results indicated that the resulting form-stable PCMs could well maintain their phase transition characteristics and demonstrated great thermal energy storage capability and temperature regulation ability.  相似文献   

10.
11.
含油污泥薄层干燥特性及动力学模型分析   总被引:2,自引:0,他引:2  
采用薄层干燥方式进行含油污泥热干燥的研究,引入薄层干燥模型对含油污泥干燥过程进行模拟,结果表明,Midilli模型比其他模型更适合含油污泥的薄层干燥分析。应用Fick扩散模型,得到80~140℃条件下含油污泥干燥的有效扩散系数变化范围为1.08×10-10~4.22×10-10 m2/s,其值随着温度升高而增大。根据Arrhenius经验公式建立温度与扩散系数的关系,得到含油污泥干燥时水分扩散的活化能为27.26kJ/mol。  相似文献   

12.
通过野外观测实验探讨了戈壁地表风沙运动的若干特征。结果表明:戈壁地表风沙活动层主要集中在距地表60 cm高度内;不同粒径沙粒输沙强度的垂向分布不同,以0.25~0.5mm为过渡区,0.25mm颗粒输沙强度随高度增大先增加而后按指数规律递减,0.5mm颗粒则随高度增加呈线性递减,且粒径越大,递减的梯度越小;风沙流中颗粒的粒度组成不仅受风速和颗粒起动风速影响,而且还与地表粒度组成直接相关;输沙率与风速之间关系服从指数规律,公式形式为q=α.eβ.u,其中α、β为相关系数,u为地面2m高处风速。  相似文献   

13.
湿式氧化法气体脱硫的现状与趋势   总被引:4,自引:0,他引:4  
液相氧化法脱除H2S具有脱硫效率高,可将H2S一步转化为硫元素,大多数脱硫剂可以再生等特点,目前研究过的液相氧化法有百余种,其中有工业价值的20余种。文中介绍了几种典型的液相脱硫工艺:砷基工艺点基工艺和铁基工艺的化学反应原理及发展趋势。  相似文献   

14.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

15.
Leachate generated in a landfill may not be treated by conventional biological treatment due to its nature and complexity. The process of forming aerobic granules in batch sequencing reactors having features such as; reducing the settling process time and saving energy consumption and high decomposition rate have been noticed by researchers. In the present study, the structure of sequencing batch reactors (SBRs) was evaluated for the formation of granules, which were subsequently utilized for the treatment of landfill leachate. The experiment was initiated by using the GSBR, containing 1200 ml with different apparatuses, to develop granular sludge, and synthetic wastewater was added to reinforcement. The selected parameters for the operational hydraulic retention time (HRT) of the wastewater (6-h cycles) included feeding, idle, aeration, settling, and discharge. Furthermore, the controlled conditions were the dissolved oxygen (DO) range of 2–2.2 mg/L, temperature range of 20–23℃, and pH of 7.5–8.3. The chemical oxygen demand (COD), mixed liquor suspended solids (MLSS), and sludge volume index (SVI) daily were measured at the influent and effluent of GSBR reactor. The main properties of aerobic granular sludge were identified during the research procedures, and the remarkable settling and potent, high-density microbial structure of the granules were confirmed. The mean size of the formulated granules was estimated at 7.46 ± 1.8 mm, and the volume of the biomass also increased from approximately 1607 to 4137 mg/L through the granulation process. Moreover, 98% of the influent chemical oxygen demand (COD) could be removed by the formulated granular sludge, and the final-stage organic loading rate was estimated at 5.65 COD/m3/day. According to the results, GSBRs could be employed for the formulation of aerobic granular sludge for the treatment of landfill leachate.  相似文献   

16.
Chemical-looping with oxygen uncoupling (CLOU) is a novel method to burn solid fuels in gas-phase oxygen without the need for an energy intensive air separation unit. The carbon dioxide from the combustion is inherently separated from the rest of the flue gases. CLOU is based on chemical-looping combustion (CLC) and involves three steps in two reactors, one air reactor where a metal oxide captures oxygen from the combustion air (step 1), and a fuel reactor where the metal oxide releases oxygen in the gas-phase (step 2) and where this gas-phase oxygen reacts with a fuel (step 3). In other proposed schemes for using chemical-looping combustion of solid fuels there is a need for an intermediate gasification step of the char with steam or carbon dioxide to form reactive gaseous compounds which then react with the oxygen carrier particles. The gasification of char with H2O and CO2 is inherently slow, resulting in slow overall rates of reaction. This slow gasification is avoided in the proposed process, since there is no intermediate gasification step needed and the char reacts directly with gas-phase oxygen. The process demands an oxygen carrier which has the ability to react with the oxygen in the combustion air in the air reactor but which decomposes to a reduced metal oxide and gas-phase oxygen in the fuel reactor. Three metal oxide systems with suitable thermodynamic properties have been identified, and a thermal analysis has shown that Mn2O3/Mn3O4 and CuO/Cu2O have suitable thermodynamic properties, although Co3O4/CoO may also be a possibility. However, the latter system has the disadvantage of an overall endothermic reaction in the fuel reactor. Results from batch laboratory fluidized bed tests with CuO and a gaseous and solid fuel are presented. The reaction rate of petroleum coke is approximately a factor 50 higher using CLOU in comparison to the reaction rate of the same fuel with an iron-based oxygen carrier in normal CLC.  相似文献   

17.
Heat pipe cooling is widely used in computer processors. Advances in microprocessor technology have resulted in reduced heat transfer surface area. Maintaining an efficient cooling process is therefore challenging. The main goal of this experimental study is to perform a parametric study on heat pipe performance using nanofluids. Nanofluids of 1 and 3 vol% of alumina nanoparticles of 20–50 nm diameters in deionized water versus deionized water as a base fluid were considered in the present study. The nanofluids are prepared in our laboratory using two-step method. The nanofluids thermal properties are measured to confirm the properties enhancement that could indicate a corresponding performance enhancement of the heat pipe. A 10 mm inner diameter, 200 mm long brass tube with 50 mm long evaporator, and 50 mm long water cooled condenser were used. Heat pipe wall temperature is reduced with nanofluids as is the temperature difference between the evaporator and condenser. The thermal diffusivity of the nanofluids is increased by 10%. The pipe pressure in case of deionized water was higher than the corresponding one for the nanofluids by 20–32%.  相似文献   

18.
In this research, desert sand is used as the sensible heat storage medium, which exchanges heat with air in the downcomer to realize heat storage and heat release. The desert sand distribution uniformity has a significant impact on the heat exchange performance and efficiency between desert sand and air for the process of convection in the downcomer. Given the superiority of sensible heat storage in convective heat transfer between desert sand and air, distributors with cylinder or conical bore solid particles and homogeneity performance testing device are designed and manufactured on the basis of convection system equipped with solid particle–air downcomer. Then, the convection experiment between solid sand and air is researched. The greater the desert sand flow rate and higher the volume density, the larger the variance of regional mass flow rate and the worse the homogeneity performance. For the cylinder bore distributor, the smaller the sand particle size is, the greater affected the sand groups can be. The sand homogeneity performance is preferable with the two particle size ranges: 0.18-0.25 mm and 0.15-0.18 mm. The total sand flow rate decreases, but the uniformity improves with the increase of the air flow velocity, and the best distribution performance is achieved at an air velocity of 0.6 m/s. However, the distribution performance declines with the air flow velocity persistently increasing because the sand groups are pushed to one pipe side close to the wall. The sand groups deflect seriously with the air flow velocity increasing.  相似文献   

19.
Reverse-flow packed bed reactors can be used to treat gaseous pollutants from chemical plants. This article describes the design and operation of a modified reverse-flow reactor (MRFR) which has a recuperator on each end of the reactor and a reaction zone in the middle. The recuperators have low thermal dispersion and the reaction zone has a high thermal dispersion, obtained by placing metal inserts into the bed, parallel with the gas flow. Performance of the MRFR during extended lean and rich conditions is determined with analytical analysis and compares well with numerical simulations of CO oxidation; however, the theory is expected to be useful for any reaction kinetics. A major advantage of this MRFR design is an extended time for the reactor to extinguish during lean conditions. This work also describes MRFR performance with internal reactor cooling, which can be used as a control mechanism to maintain reactor temperature for proper removal of volatile organic compounds.  相似文献   

20.
Chemical looping combustion (CLC) is a process in which oxygen required for combustion of a fuel is supplied by the metal oxide. Metal oxide plays the role of an oxygen carrier by providing oxygen for combustion when being reduced and is then re-oxidized by air in a separate reactor. Combustion is thus without any direct contact between air and fuel: as a consequence flue gas does not contain nitrogen of air which simplifies flue gas treatment prior to sequestration. In the present study, biogas combustion was analyzed in a chemical looping combustion fluidized bed reactor. NiAl0.44O1.67 and Cu0.95Fe1.05AlO4 metal oxide particles were used as oxygen carriers. The experiments have shown the feasibility of biogas combustion in chemical looping combustion: CH4 of the biogas was completely converted to CO2 and H2O with a small fraction of CO and H2. The outlet flue gas distribution profile was not affected by ageing during the cycles of reduction and oxidation, indicating the chemical stability of the oxygen carriers. There was limited formation of carbon on the oxygen carriers during reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号