首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
This paper presents research currently being conducted in Central Queensland, Australia to understand conflicts between coastal zone resource users and the associated sociocultural and political issues surrounding coastal zone management. Conflict occurs between stakeholders in the coastal zone over values, conservation and development trade-offs, access, and resource use rights. Decisions are currently made within a multi-stakeholder framework where there is limited understanding among stakeholders of each groups values and aspirations, and few, mechanisms for negotiation, or to ensure transparency of decisions and feedback on consultation. This paper reports on the contribution of stakeholder analysis and social mapping to conflict management and findings from their application. As it is applied here, stakeholder analysis and social mapping have been successful participatory tools used to document and feed back the values, interests, attitudes and aspirations of stakeholders. Understanding stakeholder conflict is essential in progressing a whole catchment approach to decision-making that secures the cooperation of a diverse range of social groups.  相似文献   

2.
Natural resource governance is by nature multi-level, mobilizing various multi-stakeholder arenas in which a social learning approach may play a role. An approach using simulation tools such as role-playing games was tested in metropolitan areas of two South American cities: (1) in the periphery of Cochabamba, to facilitate conflict resolution stemming from the impact of urbanization on the irrigation infrastructure, and (2) in peri-urban areas of São Paulo, to assist in negotiations on land and water management in a protected catchment. Both interventions were designed to broaden the stakeholders' perspectives and facilitate the exchange of the views of different actors on water and land management using role-playing games. This paper discusses how the scale strategy embedded in the tools and in the mode of participation in fact constrained the possibility of bridging the gap between organisational levels in both situations. This calls for both the crafting of multi-level approaches able to take different levels into account, and finding adequate bridging mechanisms to enhance the integration of learning within organisations and communities.  相似文献   

3.
A two-step procedure for analysing nitrogen leaching from arable land in large river basins is suggested: (1) application of a process-based dynamic model for a set of representative conditions in a large river basin to simulate water and nitrogen fluxes and (2) development of a fuzzy-rule based metamodel using the simulated nitrogen fluxes in Step 1 as a training set. After that the metamodel can be used for rapid assessment of water quality inside the considered ranges of parameters, describing natural conditions and management practices. This paper describes Step 1 of the procedure. Step 2 is described in an accompanying paper (Haberlandt et al., Ecological Modelling 150 (3) (2002) 277–294). The advantage of this approach is that it combines the ‘process-based foundation’ with the resulting simplicity of the metamodel. Simulation experiments for analysing nitrogen (N) leaching from arable land were performed using the Soil and Water Integrated Model (SWIM) for a set of representative conditions in the Saale basin (23 687 km2) in Central Europe. The Saale River is one of the main tributaries of the Elbe. In advance, hydrological validation of the model was done for the whole Saale basin and validation of nitrogen dynamics was fulfilled in two mesoscale sub-basins of the Elbe. For the simulation experiments the drainage basin area was sub-divided into five climate zones and nine representative soil classes were chosen. The basic rotation and fertilisation schemes were established using regional information obtained from literature. In addition, the effects of changing the basic rotation to more/less intensive ones and changing fertilisation rates by 50% increase/decrease were studied. The ranges of simulated nitrogen fluxes for the basic rotation and fertilisation schemes are comparable to available regional estimates and differences between sub-regions and soils are plausible. The relative importance of natural and anthropogenic factors affecting nitrogen leaching for the Saale River basin was as follows: (1) soil, (2) climate, (3) fertilisation rate and (4) crop rotation. The simulation experiments provide a basis for a fuzzy-rule based metamodel approach, which aims at rapid water quality assessment of large regions.  相似文献   

4.
This study presents the modelling approach and impact assessment of different strategies for managing wetland water resources and groundwater dynamics of landscapes which are characterised by the hydrological interactions of floodplains and the adjacent lowlands. The assessment of such impacts is based on the analysis of simulation results of complex scenarios of land-use changes and changes of the density of the drainage-network. The method has been applied to the 198 km2 Lower Havel River catchment as a typical example of a lowland–floodplain landscape. The model used consists of a coupled soil water and groundwater model, where the latter one is additionally coupled to the surface channel network. Thus, the hydrological processes of the variable saturated soil zone as well as lateral groundwater flow and the interactions between surface water and groundwater are simulated in an integrated manner. The model was validated for several years of significantly different meteorological conditions. The comparison of lateral and vertical water balance components showed the dominance of lateral flow processes and the importance of the interactions between surface water and groundwater for the overall water balance and the hydrological state of that type of landscape.The simulation of land-use change scenarios showed only minor effects of land-use change on the water balance and groundwater recharge. Changes of groundwater recharge were particularly small within the wetland areas being part of the floodplain where interactions between surface water and groundwater are most pronounced. Alterations in vertical groundwater recharge were counter-balanced by the lateral interaction between groundwater and surface water. More significant deviations in groundwater recharge and storage were observed in the more peripheral areas towards the catchment boundaries which are characterised by greater groundwater distance from the surface and less intense of ground water–surface water interactions.However, the simulation results assuming a coarsening of the drainage network density showed the importance of drainage structure and geometry for the water balance: The removal of the artificial draining ditches in the floodplain would result in significant alterations of total groundwater recharge, i.e., less recharge from winter to early summer and an increase of groundwater recharge during summer and autumn. Furthermore the different effects of groundwater recharge alterations on the dynamics of groundwater stages within the wetland areas close to the floodplains compared to the more peripheral areas could be quantified. Finally, it will be discussed that a well-adjusted co-ordination of different management measures is required to reach a sustainable water resources management of such lowland–floodplain landscapes.  相似文献   

5.
氨(NH3)挥发是农业生态系统氮肥损失的重要途经,然而,北方干旱半干旱地区水肥耦合马铃薯田土壤NH3挥发规律缺少数据支撑.该研究利用通气法田间原位观测我国西北滴灌水肥一体化和传统沟灌施肥马铃薯田水肥耦合土壤NH3挥发特征,设置滴灌施肥500 kg·hm-2(DDF)、滴灌施肥1000 kg·hm-2(DGF)、滴灌不施肥(DCK)、沟灌施肥500 kg·hm-2(FDF)、沟灌施肥1000 kg·hm-2(FGF)、沟灌不施肥(FCK)6个处理.结果表明,NH3挥发速率峰值出现在施用氮肥后1—2周,不同水肥处理土壤NH3挥发存在显著差异(P<0.01).2018年DDF、DGF、DCK、FDF、FGF、FCK土壤NH3累积挥发量分别为21.50、28.14、7.20、37.06、66.25、11.88 kg·hm-2;2019年,分别为9.42、15.25、7.24、34.73、76.81、8.56 kg·hm-2.2018年和2019年,沟灌FDF处理的NH3挥发损失率分别是滴灌DDF处理的1.76倍和11.89倍;沟灌FGF处理分别是滴灌DGF的2.60倍和8.54倍.滴灌DGF处理NH3挥发强度比滴灌DDF处理分别增加27.03%和52.94%,沟灌FGF处理比沟灌FDF处理分别增加76.04%和118.37%.随施肥量增加,传统沟灌马铃薯田土壤NH3挥发损失率和NH3挥发强度的增量高于滴灌水肥一体化模式.NH3挥发速率与土壤体积含水量、NH4+-N和NO3--N呈极显著相关(P<0.01).和传统沟灌比较,滴灌水肥一体化技术降低马铃薯田土壤NH3挥发损失率,减轻NH3挥发强度,提高马铃薯水肥利用率,减轻环境污染.  相似文献   

6.
The objective of this research work is the evaluation of the impact of landuse pattern and intensity on landscape by means of an indicator. The method used to calculate a ‘landscape indicator’ (Iland) allows to take into account the objective as well as the subjective approach of landscape. Iland corresponds to the degree of agreement between landscape supply by farmers and landscape demand by the social groups. The supply and the demand are evaluated through four criteria: ‘diversity’, ‘upkeep’, ‘openness’ and ‘heritage’. The landscape supply is calculated from data of landscape objects (punctual, linear and spatial) for each criterion recorded at the field level. The values of the four criteria for the landscape demand are allocated by the user(s) of the indicator (decision makers, regional council, social groups…) into five classes (0–4). The value of the landscape indicator is the least favourable difference between supply and demand for the four criteria. An example of calculation of the ‘landscape indicator’ for an arable farm is given. The collection of data needs 2 h with the farmer and 2 h for a survey of the farm land.  相似文献   

7.
Scientists in higher education institutions around the globe recognize the importance of engaging with public stakeholders to share their enthusiasm, explain their science, and encourage primary and secondary students to enter the sciences. However, without direct consideration of students’ and teachers’ perspectives and interests, scientists may design activities around their own goals, limiting the impact on school stakeholders (i.e., students, teachers, paraprofessional staff, students’ parents, and other caregivers). We drew from natural and social science research to describe how expanding the conception of place beyond the biophysical can help engage school stakeholders in meaningful ways. We describe the multidimensional PLACE framework that we developed to integrate perspectives, knowledge, and values of all stakeholders in engagement programming. The framework is organized around topics that stakeholders should discuss early on to ensure successful partnerships. We recommend that scientists identify and use pedagogy that is inclusive; language framed around dialogic communication methods; aims and motivations centered on engagement; cultural funds of knowledge of place (i.e., disciplinary, personal, or experiential knowledge); and evaluation of engagement based on meaningful metrics. Two case studies are presented to illustrate how the PLACE framework components, when addressed, can lead to robust, successful partnerships between scientists and schools.  相似文献   

8.
Chronic renal failure (CRF) associated with elevated dietary cadmium (Cd) among farming communities in the irrigated agricultural area under the River Mahaweli diversion scheme has reached a significantly higher level of 9,000 patients. Cadmium, derived from contaminated phosphate fertilizer, in irrigation water finds its way into reservoirs, and finally to food, causing chronic renal failure among consumers. Water samples of River Mahaweli and its tributaries in the upper catchment were analyzed to assess the total cadmium contamination of river water and the possible source of cadmium. Except a single tributary (Ulapane Stream, 3.9?μg?Cd/l), all other tested tributaries carried more than 5?μg?Cd/l, the maximum concentration level accepted to be safe in drinking water. Seven medium-sized streams carrying surface runoff from tea estates had 5.1-10?μg?Cd/l. Twenty larger tributaries (Oya), where the catchment is under vegetable and home garden cultivation, carried 10.1-15?μg?Cd/l. Nine other major tributaries had extremely high levels of Cd, reaching 20?μg?Cd/l. Using geographic information system (GIS), the area in the catchment of each tributary was studied. The specific cropping system in each watershed was determined. The total cadmium loading from each crop area was estimated using the rates and types of phosphate fertilizer used by the respective farmers and the amount of cadmium contained in each type of fertilizer used. Eppawala rock phosphate (ERP), which is mostly used in tea estates, caused least pollution. The amount of cadmium in tributaries had a significant positive correlation with the cadmium loading of the cropping system. Dimbula Tea Estate Stream had the lowest Cd loading (495.9?g/ha/year), compared with vegetable-growing areas in Uma Oya catchment with 50,852.5?g?Cd/ha/year. Kendall's τ rank correlation value of total Cd loading from the catchment by phosphate fertilizer used in all crops in the catchment to the Cd content in the tributaries was +0.48. This indicated a major contribution by the cropping system in the upper catchment area of River Mahaweli to the eventual Cd pollution of river water. Low soil pH (4.5-5.2), higher organic matter content (2-3%), and 18-20?cmol/kg cation exchange capacity (CEC) in upcountry soil have a cumulative effect in the easy release of Cd from soil with the heavy surface runoff in the upcountry wet zone. In view of the existing water conveyance system from upcountry to reservoirs in North Central Province (NCP) through diversion of River Mahaweli, in addition to their own nonpoint pollution by triple superphosphate fertilizer (TSP), this demands a change in overall upper catchment management to minimize Cd pollution through agriculture inputs to prevent CRF due to elevated dietary cadmium among NCP farmers.  相似文献   

9.
Integrating wetlands and riparian zones in river basin modelling   总被引:1,自引:0,他引:1  
Wetlands, and in particular riparian wetlands, represent an interface between the catchment area and the aquatic environment. They control the exchange of water and related chemical fluxes from the upper catchment area to surface waters like streams and lakes. Their influence on water and nutrient balances has been investigated mainly at the patch scale. In this study an attempt was made (a) to integrate riparian zones and wetlands into eco-hydrological river basin modelling, and (b) to quantify the impacts of riparian wetland processes on water and nutrient fluxes in a meso-scale catchment located in the northeastern German lowland. The investigation was performed by analysing hydro-chemical field data and applying the eco-hydrological model SWIM (Soil and Water Integrated Model), which was extended to reproduce the relevant water and nutrient flows and retention processes at the catchment scale in general, and in riparian zones and wetlands in particular. The main extensions introduced in the model were: (1) implementation of daily groundwater table dynamics at the hydrotope level, (2) implementation of water and nutrient uptake by plants from groundwater in riparian zones and wetlands, and (3) assessment of nutrient retention in groundwater and interflow. The simulation results indicate that wetlands, though they represent relatively small parts of the total catchment area, may have a significant impact on the overall water and nutrient balances of the catchment. The uncertainty of the simulation results is considerably high, with the main sources of uncertainty being the model parameters representing the geo-hydrology and the input data for land use management.  相似文献   

10.
Techniques for water harvesting from streams for irrigation and waterpower utilities, particularly in the semi-arid middle mountain region of Nepal, were developed many centuries ago. Water harvesting techniques have traditionally evolved to fit the local environment and living conditions of the people. In terms of community participation, the sustainability of community-based local water resources management in Nepal should promote traditional streamwater harvesting technologies that will potentially benefit local communities and also should be recognized by environmentalists and water experts. This paper investigates some traditional forms of water delivery technologies adopted by local farmers in three catchment areas from the middle mountain region of Nepal. Each form of indigenous practice is considered from the objective of scientific validation.  相似文献   

11.
Efficient and sustainable management of complex forest ecosystems   总被引:1,自引:0,他引:1  
A large range of models has been developed for the analysis of optimal forest management strategies, with the well-known Faustmann models dating back to the mid-19th century. To date, however, there has been relatively little attention for the implications of complex ecosystem dynamics for optimal forest management. This paper examines the implications of irreversible ecosystem responses for efficient and sustainable forest management. The paper is built around two forest models that comprise two ecosystem components, forest cover and topsoil, the interactions between these components, and the supply of the ecosystem services ‘wood’ and ‘erosion control’. The first model represents a forest that responds in a reversible way to overharvesting. In the second model, an additional ecological process has been included and the ecosystem irreversibly collapses below certain thresholds in forest cover and topsoil depth. The paper presents a general model, and demonstrates the implications of pursuing efficient as well as sustainable forest management for the two forest ecosystems. Both fixed and variable harvesting cycles are examined. Efficient and sustainable harvesting cycles are compared, and it is shown that irreversible ecosystem behaviour reduces the possibilities to reconcile efficient and sustainable forest management through a variable harvesting cycle.  相似文献   

12.
Water quality modelling in the meso-scale Rhin catchment in the German federal state Brandenburg was done (1) to answer some specific questions concerning identification of point and diffuse sources of nutrient pollution in the catchment, (2) to assess the influences of possible climate and land use changes on water quantity and quality and (3) to evaluate potential measures to be done in order to achieve a “good ecological status” of the river and its lakes as required by the Water Framework Directive (WFD).The Rhin catchment is a typical highly regulated lowland river basin in Northern Germany. The regulations complicate water quantity and quality modelling in the catchment. The research was done by using the eco-hydrological model SWIM (Soil and Water Integrated Model), which simulates water and nutrient fluxes in soil and vegetation, as well as transport of water and nutrients to and within the river network. The modelling period was from 1981 until 2005. After calibrating the hydrological processes at different gauges within the basin with satisfactory results, water quality (nitrogen and phosphorus) modelling was done taking into account the emissions of different point sources (sewage treatment plants, etc.) and identifying the amount of diffuse pollution caused mainly by agriculture.For suggesting some feasible measures to improve water quality and to reduce diffuse pollution considering possible climate and land use changes, different reasonable scenarios were applied in consultation with the Environmental Agency of Brandenburg (LUA). The study revealed that the amount of water discharge has significant influence on the concentration of nutrients in the river network, and that nitrogen pollution, caused mainly by diffuse sources, could be notably reduced by application of agricultural measures, whereas the pollution by phosphorus could be diminished most effectively by the reduction of point source emissions.  相似文献   

13.
14.
为提高南方山地丘陵区充沛降水的利用效率 ,缓解山地城镇用水短缺、自然生境大量丧失、河道及水库干涸且污染严重等生态环境危机 ,文章利用GIS技术 ,对研究区所处的小流域原始地表水系网络和集水区进行了恢复和划分 ,结合土地利用类型特征对各集水区产流量进行了估算 ,在此基础上提出了小流域集水工程的布置方案。  相似文献   

15.
Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1–40.8 times and As varied 1.75–8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of ‘safe’ rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution.  相似文献   

16.
Individual based model of slug population and spatial dynamics   总被引:1,自引:0,他引:1  
The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field within which slug spatial dynamics and changes in abundance were simulated. The strong dependence of slug behaviour on environmental conditions is built into the model, which is based upon previous work on the environmental dependence of slug population dynamics. The simulation results show that the IbM described well changes in the slug population. The IbM proved capable of describing slug populations over 3.5 years, including the presence, magnitude and duration of D. reticulatum population crashes within this period. Moreover, the model was capable of reproducing slug population dynamics at two sites, with distinct weather and some 100 km apart, with minor changes in initialisation values but no change in model structure and parameter values. A study of field heterogeneity, which might simulate various field designs, indicated the importance of spatial structuring to slug population dynamics and the utility of the IbM for simulating a range of potential spatial management treatments for slug control to maximise crop yield. This IbM system performs well and is currently being used as part of an integrated approach to predict slug population dynamics and control in the UK.  相似文献   

17.
18.
Extrapolating simulations of bioenergy crop agro-ecosystems beyond data-rich sites requires biophysically accurate ecosystem models and careful estimation of model parameters not available in the literature. To increase biophysical accuracy we added C4 perennial grass functionality and agricultural practices to the Biome-BGC (BioGeochemical Cycles) ecosystem model. This new model, Agro-BGC, includes enzyme-driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon and nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that simulates nitrogen fertilization, harvest, fire, and incremental irrigation. To obtain spatially generalizable vegetation parameters we used a numerical method to optimize five unavailable parameters for Panicum virgatum (switchgrass) using biomass yield data from three sites: Mead, Nebraska, Rockspring, Pennsylvania, and Mandan, North Dakota. We then verified simulated switchgrass yields at three independent sites in Illinois (IL). Agro-BGC is more accurate than Biome-BGC in representing the physiology and dynamics of C4 grass and management practices associated with agro-ecosystems. The simulated two-year average mature yields with single-site Rockspring optimization have Root Mean Square Errors (RMSE) of 70, 152, and 162 and biases of 43, −87, 156 g carbon m−2 for Shabbona, Urbana, and Simpson IL, respectively. The simulated annual yields in June, August, October, December, and February have RMSEs of 114, 390, and 185 and biases of −19, −258, and 147 g carbon m−2 for Shabbona, Urbana, and Simpson IL, respectively. These RMSE and bias values are all within the largest 90% confidence interval around respective IL site measurements. Twenty-four of twenty-six simulated annual yields with Rockspring optimization are within 95% confidence intervals of Illinois site measurements during the mature fourth and fifth years of growth. Ten of eleven simulated two-year average mature yields with Rockspring optimization are within 65% confidence intervals of Illinois site measurements and the eleventh is within the 95% confidence interval. Rockspring optimized Agro-BGC achieves accuracies comparable to those of two previously published models: Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) and Integrated Farm System Model (IFSM). Agro-BGC suffers from static vegetation parameters that can change seasonally and as plants age. Using mature plant data for optimization mitigates this deficiency. Our results suggest that a multi-site optimization scheme using mature plant data from more sites would be adequate for generating spatially generalizable vegetation parameters for simulating mature bioenergy crop agro-ecosystems with Agro-BGC.  相似文献   

19.
《Ecological modelling》2005,187(1):60-70
The estuary of the Swan and Canning Rivers in Western Australia is becoming increasingly prone to algal blooms, fish deaths and other biochemical problems that are thought to be associated with increasing eutrophication. Phosphorus and nitrogen enrichment are seen as the two most common causes of such eutrophication, with both elements being transported in streamflow and with concentrations strongly dependent upon land-use in the catchment. Many of the efforts to prevent and control eutrophication in the estuary are focused on managing land-use within the catchment. In this paper, the large-scale catchment model (LASCAM) is applied to Ellen Brook, a rural catchment located within the Swan River catchment, to simulate catchment exports of phosphorus and nitrogen, under a range of land cover scenarios that are designed to control the eutrophication. The scenarios, which are related to different management options for the catchment, are: (i) reforestation of agricultural land; (ii) reduction in fertiliser application; and (iii) urbanisation following a highway development. The model results show that: (i) full reforestation of agricultural land is expected to reduce phosphorus and nitrogen export by 50 and 85%, respectively; (ii) a proportionally greater reduction of phosphorus and nitrogen export occurs for smaller areas of reforestation than for larger areas; (iii) reduction in phosphorus fertiliser application produces a linear response with respect to phosphorus export; (iv) urbanisation increases runoff due to the larger impermeable areas causing an increase of overland flow during storms; and (v) phosphorus and nitrogen loads are expected to increase about 4 and 12%, respectively, during the 10 years following urbanisation.  相似文献   

20.
SUMMARY

Integrated natural resources management (INRM) has to address both the livelihood goals of farmers and the ecological sustainability of agroecosystems and natural resources. Under the Ecoregional Initiative for the Humid and Sub-Humid Tropics of Asia — Ecor(1)Asia — one major set of activities has been the development of approaches, methodologies, and tools to meet the challenges of INRM research for sustainable agricultural development. Examples provided illustrate the role of these methodologies in the three main phases of knowledge development for improving INRM impact: knowledge generation, knowledge capitalization, and knowledge mobilization. The methodologies are designed for better integration across disciplines, spatial scales, and hierarchical levels of social organization. Attempts are made to quantify trade-offs between biophysical sustainability and socio-economic considerations. The case is made for using these methodologies in a more complementary manner to help bridge the topdown and bottom-up approaches in INRM. Inherent in the developing and implementing of these methodologies is the forging of partnerships and fostering linkages with multiple stakeholders, as well as using the knowledge base and integrative tools as communication platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号