首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depending on the final application, several methodologies for traffic emission estimation have been developed. Emission estimation based on total miles traveled or other average factors is a sufficient approach only for extended areas such as national or worldwide areas. For road emission control and strategies design, microscale analysis based on real-world emission estimations is often required. This involves actual driving behavior and emission factors of the local vehicle fleet under study. This paper reports on a microscale model for hot road emissions and its application to the metropolitan region of the city of Santiago, Chile. The methodology considers the street-by-street hot emission estimation with its temporal and spatial distribution. The input data come from experimental emission factors based on local driving patterns and traffic surveys of traffic flows for different vehicle categories. The methodology developed is able to estimate hourly hot road CO, total unburned hydrocarbons (THCs), particulate matter (PM), and NO(x) emissions for predefined day types and vehicle categories.  相似文献   

2.
The city of Santiago is characterized by low average rainfall and atmospheric thermal inversion layers. Air pollution levels are high. Dichotomous sampling of inhalable particulate matter (IPM) has been conducted at a fixed station on the Universidad de Santiago de Chile (USACH) campus from October 1981 to March 1983. The air sampling inlet cutoff was 15 μm, the fractioning cut being located at a 2.5 μm aerodynamic diameter. The samples were analyzed qualitatively by X-ray fluorescence (XRF) spectrometry. Information on the IPM component of urban air pollution in Santiago by particle sizing sampling methods was not previously available, nor had XRF spectrometry been applied to local IPM samples. A multivariate statistical analysis of the body of data comprising sample masses and XRF elemental intensities is presented and discussed. The group of elements Al, Si, K, Ca, Ti and Fe shows strong statistical correlations in the coarse particle fraction; correlations in the fine particle fraction include Br/Pb. Evidence for seasonal variations in the air pollution pattern is presented. Pollution by sulfur is discussed.  相似文献   

3.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   


4.
The emission inventory of the city of Santiago, Chile, related to mobile sources was built up using constant emission factors extracted from international literature. To improve the estimate of mobile source emissions, an experimental program was designed, consisting of transient tests on a chassis dynamometer over a sample of about 166 vehicles, applying 9 local driving cycles with average speeds of 3-80 km/hr, and experimentally determined in previous research carried out by the authors. An analysis of the influence of fuel inlet technology, and a year time-length model over emissions, was undertaken. We proposed emission factors as a function of average speed and of CO, THC, and NOx for catalytic and noncatalytic light-duty gasoline vehicles, disaggregated on commercial and private cars. A comparative analysis with emission factors obtained for the application of the COPERT II and AP-42 models was also presented. Our current analysis gives solid evidence indicating that to obtain a reasonable accuracy on emission estimates and calculations, local emission factors must be used.  相似文献   

5.
ABSTRACT

The emission inventory of the city of Santiago, Chile, related to mobile sources was built up using constant emission factors extracted from international literature. To improve the estimate of mobile source emissions, an experimental program was designed, consisting of transient tests on a chassis dynamometer over a sample of about 166 vehicles, applying 9 local driving cycles with average speeds of 3-80 km/hr, and experimentally determined in previous research carried out by the authors. An analysis of the influence of fuel inlet technology, and a year time-length model over emissions, was undertaken. We proposed emission factors as a function of average speed and of CO, THC, and NOx for catalytic and noncatalytic light-duty gasoline vehicles, disaggregated on commercial and private cars. A comparative analysis with emission factors obtained for the application of the COPERT II and AP-42 models was also presented. Our current analysis gives solid evidence indicating that to obtain a reasonable accuracy on emission estimates and calculations, local emission factors must be used.  相似文献   

6.
The amounts of formaldehyde and nitrous acid (HONO) in gas phase and dews of Santiago de Chile were simultaneously measured. Formaldehyde concentrations values in the liquid phase (dews) correlate fairly well with those in the gaseous phase and are even higher than those expected from gas–dew equilibrium. On the other hand, nitrite concentrations in dews were considerably smaller (ca. 15 times) than those expected from the gas-phase concentrations. This under-saturation is attributed to diffusion limitations due to the relatively large HONO solubility. In agreement with this, under-saturation increases with the rate of dew formation and the pH of the collected waters, factors that should increase the rate of gas to liquid HONO transfer required to reach equilibrium.  相似文献   

7.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

8.
A monitoring campaign was performed in Santiago de Chile during a winter month of 2003 and 2006 (July) using several instruments to measure the size distribution of particulate material. For the first time, the size distribution of ultrafine particles was measured in Santiago, and an estimation of its sources was done by analyzing its temporal variation. The study was performed in three sites; one of them is located in the eastern part of Santiago, a sector with low particle concentration and about 100 m from a busy street. The other site is located in the western part, which is the sector that has the highest concentration of fine and coarse particle matter during winter, also located far from a street. The third site is located within 5 m from the busiest street in Santiago. In all stations traffic is the dominating source for fine and ultrafine particles and the size distribution is peaked towards 60–100 nm (soot mode). Only in the site near the street, it is possible to see a clear peak towards smaller sizes (10–30 nm). The size distribution measurements presented here indicate that aerosol dynamics play a more important role for the Santiago case as compared to cleaner cities in Europe. Changes in the particle size during different hours of the day reflect both variations in meteorological mixing conditions as well as effects of aerosol dynamic processes such as coagulation, condensation and dry deposition. A relative increase in the number of the larger ultrafine particles (d ≥ 70 nm), as compared to the number of smaller particles (d < 70 nm) correlated with wind speed is an indication of pollution transport with aged particles from other parts of the city.  相似文献   

9.
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios—business as usual (BAU), and mitigation—and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater.

Implications: The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.  相似文献   

10.

Recent calculations of carbon dioxide (CO2) emissions have faced challenges because data consist of only partial information, which is called “incomplete information.” According to the emission factor method, energy consumption and CO2 emission factors with incomplete information may lead to unmatched multiplication between themselves, which affects accuracy and increases uncertainties in emission results. To address a specific case of incomplete information that has not been fully explored, we studied the effects of incomplete condition information on the estimates of CO2 emissions from liquefied natural gas (LNG) in China. Based on Chinese LNG sampling data, we obtained the specific-country CO2 emission factor for LNG in China and calculated the corresponding CO2 emissions. By applying hypothesis testing, regression analysis, variance analysis, or Monte Carlo (MC) simulations, the effects of incomplete information on the uncertainty of CO2 emission calculations in three cases were analyzed. The results indicate that calorific values have more than a 9.8% impact on CO2 emission factors and CO2 emissions with incomplete sample information. Regarding incomplete statistical information, the impact of statistical temperature on CO2 emissions exceeds 5.5%. Regarding incomplete sample and statistical information, sample and statistical temperatures can individually increase estimate biases by more than 5.2%. Significantly, the impacts of sample temperature and statistical temperature may offset each other. Therefore, the incomplete condition information is quite important and cannot be ignored in the estimation of CO2 emissions from LNG and international fair comparison.

  相似文献   

11.
Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus imperative to continue the efforts to improve air quality, particularly focusing on industrial sources.  相似文献   

12.
In this work, 24-h PM10 samples were collected in Rio de Janeiro, Brazil, and analysed for trace elements (Cd, Ce, Cu, La, Mo, Ni, Pb, Pd, Rh, Sb and Sn). The sampling was carried out at five locations (Bonsucesso; Centro, downtown city; Copacabana; Nova Igua?u and Sumaré) with different traffic densities and anthropogenic activities. An analytical method based on the EPA method for the determination of trace elements in airborne particulate matter (PM), using ultrasonic-assisted extraction and inductively coupled plasma mass spectrometry (ICP-MS) was applied. Our results suggest that vehicular traffic is the most important source of environmental pollution at the studied sites. The presence of Mo, Pd and Rh in the analysed filters reflects an additional source of pollution caused by the erosion and deterioration of automotive catalytic converters.  相似文献   

13.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NOx), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NOx emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NOx emissions, but there are significant opportunities for further reduction in these emissions using existing technologies.

Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important.  相似文献   


14.
Rubio MA  Lissi E  Herrera N  Pérez V  Fuentes N 《Chemosphere》2012,86(10):1035-1039
Phenol, nitrophenols and dinitrophenols were measured in air and dews in downtown Santiago de Chile. In both systems, phenol, 2-nitrophenol (2-NP), and 4-nitrophenol (4-NP) were the compounds found in higher concentrations and with major frequency. Temporal profiles in air were compatible with a significant direct incorporation from mobile sources. The data can be explained in terms of a faster removal of 2-NP than 4-NP, with the former predominating in fresh air masses and 4-NP in more aged samples. All these compounds, as well as dinitrophenols, were found in dew waters. Simultaneous measurements in air and dew indicate that phenol present in dew exceeds that expected in equilibrated samples, while the opposite occurs with 4-NP. This last result is associated to mass transfer limitations for the highly water soluble nitroderivative.  相似文献   

15.
A study design was developed and demonstrated for deployment of a portable emission measurement system (PEMS) for excavators. Excavators are among the most commonly used vehicles in construction activities. The PEMS measured nitric oxide, carbon monoxide, hydrocarbons, carbon dioxide, and opacity-based particulate matter. Data collection, screening, processing, and analysis protocols were developed to assure data quality and to quantify variability in vehicle fuel consumption and emissions rates. The development of data collection procedures was based on securing the PEMS while avoiding disruption to normal vehicle operations. As a result of quality assurance, approximately 90% of the attempted measurements resulted in valid data. On the basis of field data collected for three excavators, an average of 50% of the total nitric oxide emissions was associated with 29% of the time of operation, during which the average engine speed and manifold absolute pressure were significantly higher than corresponding averages for all data. Mass per time emission rates during non-idle modes (i.e., moving and using bucket) were on average 7 times greater than for the idle mode. Differences in normalized average rates were influenced more by intercycle differences than intervehicle differences. This study demonstrates the importance of accounting for intercycle variability in real-world in-use emissions to develop more accurate emission inventories. The data collection and analysis methodology demonstrated here is recommended for application to more vehicles to better characterize real-world vehicle activity, fuel use, and emissions for nonroad construction equipment.  相似文献   

16.
17.
ABSTRACT

A case study was conducted to evaluate the SO2 emission reduction in a power plant in Central Mexico, as a result of the shifting of fuel oil to natural gas. Emissions of criteria pollutants, greenhouse gases, organic and inorganic toxics were estimated based on a 2010 report of hourly fuel oil consumption at the “Francisco Pérez Ríos” power plant in Tula, Mexico. For SO2, the dispersion of these emissions was assessed with the CALPUFF dispersion model. Emissions reductions of > 99% for SO2, PM and Pb, as well as reductions >50% for organic and inorganic toxics were observed when simulating the use of natural gas. Maximum annual (993 µg/m3) and monthly average SO2 concentrations were simulated during the cold-dry period (152–1063 µg/m3), and warm-dry period (239–432 µg/m3). Dispersion model results and those from Mexico City’s air quality forecasting system showed that SO2 emissions from the power plant affect the north of Mexico City in the cold-dry period. The evaluation of model estimates with 24 hr SO2 measured concentrations at Tepeji del Rio suggests that the combination of observations and dispersion models are useful in assessing the reduction of SO2 emissions due to shifting in fuels. Being SO2 a major precursor of acid rain, high transported sulfate concentrations are of concern and low pH values have been reported in the south of Mexico City, indicating that secondary SO2 products emitted in the power plant can be transported to Mexico City under specific atmospheric conditions.

Implications: Although the surroundings of a power plant located north of Mexico City receives most of the direct SO2 impact from fuel oil emissions, the plume is dispersed and advected to the Mexico City metropolitan area, where its secondary products may cause acid rain. The use of cleaner fuels may assure significant SO2 reductions in the plant emissions and consequent acid rain presence in nearby populated cities and should be compulsory in critical areas to comply with annual emission limits and health standards.  相似文献   

18.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

19.
High concentration of fine airborne particulates is considered one of the major environmental pollutants in Santiago, the Chilean Capital city, which in 1997 was declared a PM10 saturated zone. To date there is no control of the amounts of fine and coarse aerosols concentrations and the source and chemical characterizations of the PM2.5 particulates in the carbonaceous fractions are not well known even though this fraction could be represented almost the 50% in mass of the PM2.5.In this work, we present for the first time determinations of primary organic aerosol (POA) and secondary organic aerosol composition (SOA) fractions of the total mass of PM2.5 particulates collected in the urban atmosphere of Santiago City. Our purpose is to know the anthropogenic contributions to the formation of SOA. To accomplish this we used the elemental carbon (EC) and organic carbon (OC) determinations developed by automatic monitoring stations installed in the city during the period 2002–2005, with a particular analysis of the summer time occurred in February 2004. Based on the EC tracer method, we have estimated the POA and SOA fraction and our data permit us to estimate the SOA reaching up to 20% of total organic aerosol matter, in good agreement to other measurements observed in large cities of Europe and U.S.A.  相似文献   

20.
The aim of the present study is to identify and quantify the main sources of polycyclic aromatic hydrocarbons (PAHs) associated with aerosols (PM10) collected at three different sampling stations: 8° Distrito, CEASA and Charqueadas. The samples were collected between November 2001 and November 2002, and the concentrations of 16 major PAHs were determined according to EPA. The filters containing particulate matter were extracted with dichloromethane in Soxhlet and the extracts were later analysed in a gaseous chromatograph coupled to a mass spectrometer (GS/MS). The average concentrations of PAHs ranged between 0.04 and 2.30 ng m−3. The analysis of principal components was applied to the chemical and meteorological variables in order to facilitate the identification of sources of PAHs emission into the atmospheric particulate. The study identified the following sources of PAHs: vehicular emissions, such as diesel oil, petrol, alcohol, and kerosene; industrial emissions, like lubricating oils; emissions from hospital waste burning, and coal burning at power plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号