首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
He X  Nie X  Wang Z  Cheng Z  Li K  Li G  Hung Wong M  Liang X  Tsui MT 《Chemosphere》2011,84(10):1422-1431
Organic pollutants, heavy metals and pharmaceuticals are continuously dispersed into the environment and have become a relevant environmental emerging concern. In this study, a situ assay to assess ecotoxicity of mixed pollutants was carried out in three typical sites with different priority contaminations in Guangzhou, China. Chemical analysis of organic pollutants, metals and quinolones in three exposure sites were determined by GC-ECD/MS, ICP-AES and HPLC, as well as, a combination of biomarkers including: ethoxyresorufin O-deethylase (EROD); aminopyrine N-demethylase (APND); erythromycin N-demethylase (ERND); glutathione S-transferase (GST); malondialdehyde (MDA); CYP1A; and P-glycoprotein (P-gp) mRNA expressions were evaluated in Mugilogobius abei. Results of chemical analysis in sediment samples revealed that the dominant chemicals were organic pollutants and heavy metals in Huadi River while quinolones in the pond. Bioassays indicated that differences among sites were in relation to some specific biomarkers. EROD and GST activities significantly increased after 72 h in situ exposure, but no difference was observed among the exposure sites. APND, ERND and MDA exhibited dissimilar change patterns for different priority pollutants. CYP1A and P-gp mRNA expressions were significantly induced at all exposure sites, whilst P-gp activity was typical for S2 with the highest levels of quinolones. The molecular biomarkers seemed to be more susceptible than enzyme activities. These assays confirmed the usefulness of applying a large array of various combined biomarkers at different levels, in assessing the toxic effects of mixed pollutants in a natural aquatic environment.  相似文献   

2.
Santos TG  Martinez CB 《Chemosphere》2012,89(9):1118-1125
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus.  相似文献   

3.
This field study investigates the morphological indices (condition index, hepatosomatic index) and biochemical (catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), metallothionein (MT), lipid peroxidation) parameters in liver, gills and kidney of common sole (Solea solea) originating from different sites of the Tunisian coast area impacted by different anthropogenic activities. Differences among sites and tissues for AChE, GST, CAT, MT and TBARS were found and possibly related to known sources of domestic and industrial discharges in the studied sites. Liver, gills and kidney CAT, liver and kidney MT and brain AChE were key biomarkers to discriminate fish of different sites. So, we suggest using these biomarkers in future biomonitoring.  相似文献   

4.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

5.
This study examined the influence of increasing temperatures in spring and summer on biochemical biomarkers in Mytilus galloprovincialis mussels sampled from Bizerte lagoon (northern Tunisia). Spatial and seasonal variations in a battery of seven biomarkers were analyzed in relation to environmental parameters (temperature, salinity, and pH), physiological status (condition and gonad indexes), stress on stress (SoS), and chemical contaminant levels (heavy metals, polycyclic aromatic hydrocarbons (PAHs), and PCBs) in digestive glands. Integrated biological response (IBR) was calculated using seven biomarkers (acetylcholinesterase (AChE), benzo[a]pyrene hydroxylase (BPH), multixenobiotic resistance (MXR), glutathione S-transferase (GST), catalase (CAT), malondialdehyde (MDA), and metallothioneins (MT). Seasonal variations in biological response were determined during a critical period between spring and summer at two sites, where chemical contamination varies by a factor of 2 for heavy metals and a factor 2.5 for PAHs. The analysis of a battery of biomarkers was combined with the measurement of physiological parameters at both sites, in order to quantify a maximum range of metabolic regulation with a temperature increase of 11 °C between May and August. According to our results, the MT, MDA, CAT, and AChE biomarkers showed the highest amplitude during the 11 °C rise, while the BPH, GST, and MXR biomarkers showed the lowest amplitude. Metabolic amplitude measured with the IBR at Menzel Abdelrahmen—the most severely contaminated station—revealed the highest metabolic stress in Bizerte lagoon in August, when temperatures were highest 29.1 °C. This high metabolic rate was quantified for each biomarker in the North African lagoon area and confirmed in August, when the highest IBR index values were obtained at the least contaminated site 2 (IBR = 9.6) and the most contaminated site 1 (IBR = 19.6). The combined effects of chemical contamination and increased salinity and temperatures in summer appear to induce a highest metabolic adaptation response and can therefore be used to determine thresholds of effectiveness and facilitate the interpretation of monitoring biomarkers. This approach, applied during substantial temperature increases at two sites with differing chemical contamination, is a first step toward determining an environmental assessment criteria (EAC) threshold in a North African lagoon.  相似文献   

6.
Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22 °C, 27 °C and 30 °C for 3 months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature.  相似文献   

7.
8.
Changes in cell-type composition (CCTC) is a general phenomenon that takes place in the digestive gland epithelium of stressed molluscs. The aim of the present work was to determine whether CCTC is a reversible process in the digestive gland of sentinel slugs chronically exposed to metal pollution and how CCTC affects metal accumulation parameters and different cell and tissue biomarkers of exposure and effect. Slugs (Arion ater) from an abandoned zinc mine were transferred to a relatively unpolluted site and the other way around for 3, 10 and 28 d. The volume density of black silver deposits (VvBSD) after autometallography, and metallothionein (MT) levels were used as biomarkers of exposure to metals and CCTC and lysosomal responses were selected as effect biomarkers. Results indicated that slugs were sensitive to recent metal pollution; however, slugs chronically exposed to metals presented some characteristic features and were less responsive to pollution cessation without signs of CCTC reversal.  相似文献   

9.
The objective of this paper is to synthesize results from seven published research papers employing different experimental approaches to evaluate the fate of metal-based nanoparticles (Ag NPs, Au NPs, CuO NPs, CdS NPs, ZnO NPs) in the marine environment and their effects on two marine endobenthic species, the bivalve Scrobicularia plana and the ragworm Hediste diversicolor. The experiments were carried out under laboratory (microcosms) conditions or under environmentally realistic conditions in outdoor mesocosms. Based on results from these seven papers, we addressed the following research questions: (1) How did the environment into which nanoparticles were released affect their physicochemical properties?, (2) How did the route of exposure (seawater, food, sediment) influence bioaccumulation and effects?, (3) Which biomarkers were the most responsive? and (4) Which tools were the most efficient to evaluate the fate and effects of NPs in the marine environment? The obtained results showed that metal‐based NPs in general were highly agglomerated/aggregated in seawater. DGT tools could be used to estimate the bioavailability of metals released from NPs under soluble form in the aquatic environment. Both metal forms (nanoparticulate, soluble) were generally bioaccumulated in both species. Among biochemical tools, GST and CAT were the most sensitive revealing the enhancement of anti-oxidant defenses in both species exposed to sub-lethal concentrations of metal-based NPs. Apoptosis and genotoxicity were frequently observed.  相似文献   

10.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism.  相似文献   

11.
Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR.  相似文献   

12.
Mustafa SA  Davies SJ  Jha AN 《Chemosphere》2012,87(4):413-422
Hypoxic events frequently occur in the aquatic environment in association with micro pollutants, including heavy metals. Only a few studies are however available on the uptake and biological responses of heavy metals under hypoxic conditions. To elucidate the phenomenon, mirror carp Cyprinus carpio L. (16.13-16.22 g) were exposed chronically to dietary copper (Cu; 250 and 500 mg kg dry wt.−1) for 30 d under normoxic (8.25 mg O2 L−1) and hypoxic (∼3 mg O2 L−1) conditions and adopting an integrated approach, sub-lethal biomarker responses were determined at different levels of biological organisation. Level of oxidative DNA damage (as determined by modified Comet assay) showed strong significant difference following exposure to dietary Cu level under normoxic (1.6-fold) as well as under hypoxic condition at both Cu levels (2.1 and 2.5-folds respectively). Significant difference was also observed for haematological parameters (i.e. increased red and white blood cells, haematocrit value and haemoglobin concentration). Quantitative histology revealed alterations in tissues (i.e. liver and gills) for hypoxic and all dietary Cu treatment groups under both normoxic and hypoxic conditions suggesting a compensatory response to these organs (< 0.05). The order of Cu accumulation in tissues (as determined by ICP-OES) was liver > intestine > kidney > gill. Interestingly, SGR under both normoxic and hypoxic conditions reduced with elevating Cu levels (p = 0.019). Overall, the results provide evidence for enhanced toxicological responses in fish following exposure to Cu either alone or in combination with hypoxic condition and lends support to the evolving viewpoint that many water quality guidelines should be revisited in terms of new ecotoxicological criteria.  相似文献   

13.
Lafabrie C  Major KM  Major CS  Cebrián J 《Chemosphere》2011,82(10):1393-1400
Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and “biological dilution” phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments.  相似文献   

14.
Exposure to specific metallic compounds can cause severe deleterious modifications in organisms. Fishes are particularly prone to toxic effects from exposure to metallic compounds via their environment. Species that inhabit estuaries or freshwater environments can be chronically affected by persistent exposure to a large number of metallic compounds, particularly those released by industrial activities. In this study, we exposed yellow eels (European eel, Anguilla anguilla) for 28 days to environmentally relevant concentrations of four specific metals; lead (300, 600, and 1,200 μg/l), copper (40, 120, and 360 μg/l), zinc (30, 60, and 120 μg/l) and cadmium (50, 150, and 450 μg/l). The selected endpoints to assess the toxicological effects were neurotransmission (cholinesterasic activity in nervous tissue), antioxidant defense, and phase II metabolism (glutathione-S-transferase [GST] activity, in both gills and liver tissues), and peroxidative damage. The results showed an overall lack of effects on acetylcholinesterase for all tested metals. Lead, copper, and cadmium exposure caused a significant, dose-dependent, increase in GST activity in gill tissue. However, liver GST only significantly increased following zinc exposure. No statistically significant effects were observed for the thiobarbituric acid reactive substances assay, indicating the absence of peroxidative damage. These findings suggest that, despite the occurrence of an oxidative-based response after exposure to lead, copper, and cadmium, this had no consequence in terms of peroxidative membrane damage; furthermore, cholinergic neurotoxicity caused by lead, copper, and cadmium did not occur. The implications of these results are further discussed.  相似文献   

15.
The main objective of the present study was to investigate possible links between biomarkers and swimming performance in the estuarine fish Pomatoschistus microps acutely exposed to metals (copper and mercury). In independent bioassays, P. microps juveniles were individually exposed for 96 h to sub-lethal concentrations of copper or mercury. At the end of the assays, swimming performance of fish was measured using a device specially developed for epibenthic fish (SPEDE). Furthermore, the following biomarkers were measured: lipid peroxidation (LPO) and the activity of the enzymes acetylcholinesterase (AChE), lactate dehydrogenase (LDH), glutathione S-transferases (GST), 7-ethoxyresorufin-O-deethylase (EROD), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx). LC50s of copper and mercury (dissolved throughout metal concentrations) at 96 h were 568 μg L−1 and 62 μg L−1, respectively. Significant and concentration-dependent effects of both metals on swimming resistance and covered distance against water flow were found at concentrations equal or higher than 50 μg L−1 for copper and 3 μg L−1 for mercury (dissolved throughout metal concentrations). These results indicate that SPEDE was efficacious to quantify behavioural alterations in the epibenthic fish P. microps at ecologically relevant concentrations. Significant alterations by both metals on biomarkers were found including: inhibition of AChE and EROD activities, induction of LDH, GST and anti-oxidant enzymes, and increased LPO levels, with LOEC values ranging from 25 to 200 μg L−1 for copper and from 3 to 25 μg L−1 for mercury (dissolved throughout metal concentrations). Furthermore, significant and positive correlations were found between some biomarkers (AChE and EROD) and behavioural parameters, while negative correlations were found for others (LPO, anti-oxidant enzymes and LDH) suggesting that disruption of cholinergic function through AChE inhibition, decreased detoxification capability due to EROD inhibition, additional energetic demands to face chemical stress, and oxidative stress and damage may contribute to decrease the swimming performance of fish. Since a reduced swimming capability of fish may reduce their ability to capture preys, avoid predators, and interfere with social and reproductive behaviour, the exposure of P. microps to copper and/or mercury concentrations similar to those tested here may decrease the fitness of wild populations of this species.  相似文献   

16.
In this study, the effects of three widespread heavy metals, As(III), As(V) and Cd, and their binary mixtures on the proteomic profile in D. magna were examined to screen novel protein biomarkers using the two-dimensional gel electrophoresis method (2DE). Ten 20d daphnia were exposed to the LC20 concentrations for each of a total of 8 treatments, including the control, As(III), As(V), Cd, [As(III)+As(V)], [As(III)+Cd], [As(V)+Cd], and [As(III), As(V), Cd], for 24 h before protein isolation. Three replicates were performed for each treatment. These protein samples were employed for 2DE experiments with a pH gradient gel strip from pH 3 to pH 10. The protein spots were detected by a silver staining process and their intensities were analyzed by Progenesis software to discover the differentially expressed proteins (DEPs) in response to each heavy metal. A total of 117 differentially expressed proteins (DEPs) were found in daphnia responding to the 8 treatments and mapped onto a 2D proteome map, which provides some information of the molecular weight (MW) and pI value for each protein. All of these DEPs are considered as potential candidates for protein biomarkers in D. magna for detecting heavy metals in the aquatic ecosystem. Comparing the proteomic results among these treatments suggested that exposing D. magna to binary mixtures of heavy metals may result in some complex interactive molecular responses within them, rather than just the simple sum of the proteomic profiles of the individual chemicals, (As(III), As(V), and Cd).  相似文献   

17.
Fish live in direct contact with their immediate external environment and, therefore, are highly vulnerable to aquatic pollutants. In this study, Oreochromis niloticus were caught at three different sites in Al-Hassa irrigation channels, namely Al-Jawhariya, Um-Sabah and Al-Khadoud. The histological changes in gills and liver were detected microscopically and evaluated with semi-quantitative analyses. Also, heavy metals have been determined in the water samples in these sites. Results showed that all sites were polluted by different kinds of heavy metals. Cd and Pb were mostly detected at concentrations above the WHO reference values. Meanwhile, various histopathological abnormalities were observed in gills and liver of fish specimens. In the gill filaments, cell proliferation, lamellar cell hyperplasia, lamellar fusion, lifting of the respiratory epithelium, and the presence of aneurysmal areas were observed. In the liver, there was vacuolization of the hepatocytes, sinusoidal congestion, necrosis of the parenchyma tissue, nuclear pyknosis, eosinophilic hepatocellular degeneration, pigment accumulation, an increase in the number and size of melanomacrophage centers. Liver tumors with severe chronic inflammation were occasionally found in fish at Al-Khadoud area (first-time report). The histological lesions were comparatively most severe in the liver. Despite heavy metals assessment did not show marked differences among sites, histopathological biomarkers indicated that the surveyed fish are living under stressful environmental conditions. So, we suggest use those biomarkers in future monitoring of aquatic systems.  相似文献   

18.
In this study the effects of the main marine pollutants (metals, PAHs, PCBs and DDTs) were assessed in native mussels from the Mediterranean coast of Spain. For this purpose several biomarkers such as benzo[a]pyrene hydroxylase (BPH), DT-diaphorase (DTD), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPs), glutathione reductase (GR), metallothionein (MT) and lipid peroxidation (LPO) were measured in the digestive gland. Results showed increased LPO levels in mussels which accumulated high loads of organic compounds and arsenic in their tissues. BPH levels correlated to the concentrations of organic compounds in mussel tissues, though the range of BPH response was low in relation to the high gradient of accumulation of organic pollutants. Increased BPH levels, concomitant to low DTD and GST activities, were detected in mussels which presented high levels of organic pollutants in their tissues. This suggests that signs of LPO present in these organisms are related to the imbalance between phase I and phase II biotransformation processes. Furthermore, the increased levels of MT and CAT detected in mussels which showed high levels of Cd in their tissues appear to reflect a coordinated response which protects against the toxicity of this metal. The application of these biomarkers in environmental assessment is discussed.  相似文献   

19.
Flatfish species, such as the turbot (Scophthalmus maximus), are common targets for toxic effects, since they are exposed through the food chain (ingestion of contaminated preys) and are in direct contact with the waterborne contaminant and sediments. Furthermore, these fish species live in close proximity to interstitial water that frequently dissolves high amounts of contaminants, including metals. Despite this significant set of characteristics, the present knowledge concerning flatfish contamination and toxicity by metals is still scarce. To attain the objective of assessing the effects of metals on a flatfish species, S. maximus specimens were chronically exposed to lead, copper and zinc, at ecologically relevant concentrations, and biochemical (oxidative stress: catalase and glutathione S-transferases activities, and lipid peroxidation; neurotoxicity: cholinesterase activity) parameters were assessed on selected tissues (gills and liver). Copper had no significant effects on all tested parameters; lead was causative of significant increases in liver GSTs activities and also in lipoperoxidation of gill tissue; exposure to zinc caused a significant increase in catalase activity of gill tissue. None of the tested metals elicited noteworthy effects in terms of neurotoxicity. The obtained results showed that only the metal lead is of some environmental importance, since it was able to cause deleterious modifications of oxidative nature at relevant concentrations.  相似文献   

20.
Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号