首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, three river floodplain soils with different compositions of carbonaceous materials and a reference coal sample were extracted with water using the accelerated solvent extraction (ASE) method. The desorption enthalpy values for 2-ring PAHs were highest in the coal sample, with values in the soil samples decreasing with decrease in coal content. The values for the higher condensed PAHs showed that the highest desorption enthalpies were from the samples with the largest amount of coal-derived particles. Elevated desorption enthalpies indicated a strong bonding between PAHs and geosorbents. Moreover, with the application of ASE this study was able to conclude that the PAHs in the samples were preferentially adsorbed to carbonaceous materials with high surface areas.  相似文献   

2.
Analytical techniques used to assess the environmental risk of contamination from polycyclic aromatic hydrocarbons (PAHs) typically consider only abiotic sample parameters. Supercritical fluid extraction and sorption enthalpy experiments previously suggested slow desorption rates for PAH compounds in two coal-contaminated floodplain soils. In this study, the actual PAH availability for aerobic soil microorganisms was tested in two series of soil-slurry experiments. The experimental conditions supported microbial degradation of phenanthrene if it was weakly sorbed onto silica gel. Native coals and coal-derived particles in two soils effectively acted as very strong sorbents and prevented microbial PAH degradation. The long history of PAH exposure and degree of coal contamination apparently had no influence on the capability of the microbial soil community to overcome constraints of PAH availability. Within the context of the experimental conditions and the compounds chosen, our results confirm that coal-bound PAHs are not bioavailable and hence of low environmental concern.  相似文献   

3.
Yang Y  Ligouis B  Pies C  Achten C  Hofmann T 《Chemosphere》2008,71(11):2158-2167
Organic petrographic analysis was applied to provide direct information on carbonaceous geosorbents for PAHs in river floodplain soils. The anthropogenic OM group (primarily coal and coal-derived particles) displayed large volume amounts for all the soil samples. Distinct PAH concentrations with similar PAH distribution patterns were determined in grain size and density fractions for each sample. Two-ring PAHs had stronger correlation to organic carbon (OC) than black carbon (BC) contents, while heavier PAHs showed correlation to BC, rather than OC. In this study, we combined grain size and density separation, PAH determinations, TOC and BC measurements, and organic petrographic identification, and concluded that two-ring PAHs in soils were associated to coal particles. Other heavier PAHs could be more controlled by black carbon (BC), which were mostly coal-derived particles from former coal mining and coal industrial activity.  相似文献   

4.
A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples.  相似文献   

5.
A laboratory microcosm study was carried out to assess the influence of compost amendment on the degradation and bioavailability of PAHs in contaminated soils. Three soils, contaminated with diesel, coal ash and coal tar, respectively, were amended with two composts made from contrasting feedstock (green waste and predominantly meat waste) at two different rates (250 and 750 t ha?1) and incubated for 8 months. During this period the treatments were sampled for PAH analysis after 0, 3, 6 and 8 months. Total and bioavailable fractions were obtained by sequential ultrasonic solvent extraction and hydroxypropyl-β-cyclodextrin extraction, respectively, and PAHs were identified and quantified by GC–MS. Bioavailability decrease due to sorption was only observed at the first 3 months in the diesel spiked soil. After 8 months, compost addition resulted in over 90% loss of total PAHs irrespective of soil types. Desorption and degradation contributed to 30% and 70%, respectively, of the PAH loss in the spiked soil, while PAH loss in the other two soils resulted from 40% enhanced desorption and 60% enhanced degradation. Compost type and application rates had little influence on PAH bioavailability, but higher PAH removal was observed at higher initial concentration during the early stage of incubation. The bioavailable fraction of PAH was inversely correlated to the number of benzene rings and the octanol–water partition coefficient. Further degradation was not likely after 8-month although over 30% of the residual PAHs were bioavailable, which highlighted the application of bioavailability concept during remediation activities.  相似文献   

6.
The aim of this paper was to measure the changing desorbable fraction and bioaccessibility of phenanthrene in two different soils with increasing soil-phenanthrene contact time using supercritical fluid extractions (SFE). Both soils were spiked with 100 mg kg−1 phenanthrene and aged for 28 d. Desorption profiles were measured every 7 d using selective SFE conditions and the results were compared to 14C-phenanthrene mineralisation assays. Selective SFE showed significant differences in the rates and extents of desorption in the two soils, likely to be due to different organic matter composition. Post-extraction fitting of data yielded consistent SFE extraction times within ageing soils for bioaccessibility prediction.  相似文献   

7.
Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by CTECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.  相似文献   

8.
This study investigated particle size and density distributions of polycyclic aromatic hydrocarbons (PAHs) in two surface sediments (JZ and KF), collected from the Yellow River of Henan section, China. The concentrations of Σ15PAHs ranged from 35.6 to 45862?ng g?1 dry wt, which were greatly elevated in coarse particles and low-density fractions. The Σ15PAHs concentrations in low-density fractions were 533 (JZ) and 996 (KF) times higher than those in the corresponding high-density fractions. However, due to relatively less quantities of low-density fractions (0.27–2.33%), most of the PAHs were contributed by the high-density components. For both sediments, the influence factors of PAHs source in the environment were very complex, more so than the level of TOC and BC content. JZ sediment was dominated by 4-ring to 6-ring PAHs (61.5–75.1%), while, 2-ring to 3-ring PAHs were abundant in KF samples (39.8–72.6%). Ratios of specific PAHs reflected PAHs among the size- and density-fraction of each sediment may be contaminated by mixed of pyrolytic and petrogenic origin. Additionally, ecological risk assessment of PAHs suggested that total toxic equivalent values of PAHs in the low-density fractions were much higher than those of the corresponding high-density fractions in the studied area.  相似文献   

9.
We report on sorption isotherm of phenanthrene (Phe) for river floodplain soil associated with carbonaceous materials, with particular attention being devoted to the natural loading of Phe. Our sorption experiments with original soil samples, size, and density sub-fractions showed that the light fraction had the highest sorption capacity comparable to low rank coals. In addition, the light fraction contributed most for the sorption of Phe in total soil samples. Koc values for all fractions were in the same range, thus indicating that coal and coal-derived particles in all samples are responsible for the enhanced sorption for Phe. Sorption was strongly nonlinear and the combined partitioning and pore-filling model gave a better fit than the Freundlich sorption model. In addition, the spiked PAHs did not show the same behavior as the naturally aged ones, therefore the accessibility of indigenous background organic contaminants was reduced when coal and coal-derived particles are associated with the soils.  相似文献   

10.
The paper addresses the wear particles released from commercially available “low-metallic” automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 °C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles.  相似文献   

11.
Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C3-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax® beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for kslow and kvery slow. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions.  相似文献   

12.
The purpose of this study was to characterize size distributions of atmospheric polycyclic aromatic hydrocarbons (PAHs) with 4–6 rings at the roadside in Ho Chi Minh City, Vietnam. Ten PAHs (fluoranthene, pyrene, triphenylene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) in atmospheric particulate matters (PM) at the roadside were measured in the dry and rainy seasons in 2005 at Ho Chi Minh City, using a low-pressure cascade impactor. The PM were separated into nine fractions by their aerodynamic diameter, i.e. >9.0, 9.0–5.8, 5.8–4.7, 4.7–3.3, 3.3–2.1, 2.1–1.1, 1.1–0.7, 0.7–0.4 and <0.4 μm (a final filter). PAHs were analyzed by high-performance liquid chromatography with fluorescence detection. Total PAHs measured were higher in the rainy season than in the dry season. The mass of coarse particles occupied a higher fraction than that of fine particles in both seasons. Total PAHs were mainly concentrated in particles with aerodynamic diameter smaller than 0.4 μm. The particle size distributions of PAHs investigated were bi-modal with a peak in fine particle mode (<2.1 μm) and another peak in coarse particle mode (>2.1 μm). Generally, 5,6-ring PAHs associated mainly with fine particles and 4-ring PAHs spread out in both fine and coarse particles.  相似文献   

13.
Two aluminum water treatment residuals (Al-WTRs) from water treatment plants in Manatee County, FL and Punta Gorda, FL were evaluated as potential permeable reactive barrier (PRB) media to reduce groundwater phosphorus (P) losses. Short-term (<24 h) P sorption kinetics and long-term P sorption capacity were determined using batch equilibration studies. Phosphorus desorption was characterized following P loadings of 10, 20, 30, 40 and >70 g kg−1. Sorption and desorption studies were conducted on the <2.0 mm material and three size fractions within the <2.0 mm material. The effect of dissolved organic carbon (DOC) on P retention was determined by reacting Al-WTRs with P-spiked groundwater samples of varying initial DOC concentrations. Phosphorus sorption kinetics were rapid for all size fractions of both Al-WTRs (>98% P sorption effectiveness at shaking times ?2 h). The effect of DOC was minimal at <150 mg DOC L−1, but modest reductions (<22%) in P sorption effectiveness occurred at 587 mg DOC L−1. The P sorption capacities of the Manatee and Punta Gorda Al-WTRs (<2.0 mm) are ∼44 g kg−1 and >75 g kg−1, respectively, and the lifespan of an Al-WTR PRB is likely many decades. Desorption was minimal (<2% of the P sorbed) for cumulative P loadings <40 g kg-l, but increased (<9% of the P sorbed) at cumulative P loads >70 g kg−1. The <2.0 mm Manatee and Punta Gorda Al-WTRs are regarded as ideal PRB media for P remediation.  相似文献   

14.
Formation of bound residues of pollutants in soils and sediments is an important process to control the fate of pollutants in the environment. The most of bound residue is not solvent extractable. In this paper, we measured both extractable and non-extractable polycyclic aromatic hydrocarbons (PAHs) in different organic matter fractions of samples from the Pearl River Delta, China. Non-extractable PAHs concentration was 234.45-1424.57 μg/kg and accounted for 33.78-57.44% of total PAHs. 2-3 Ring PAHs were the dominant species and differed in concentration substantially between the samples. The atomic ratio of PAHs over organic-C in the fractions ordered as solvent soluble organic matter > humin > humic acids, matching the content of aliphatic moieties in the fractions of organic matter. The ratio of extractable and non-extractable PAHs may relate to the aging process of PAHs in soil and sediment.  相似文献   

15.
Liu S  Xia X  Zhai Y  Wang R  Liu T  Zhang S 《Chemosphere》2011,82(2):223-228
The concentrations of black carbon (BC), total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) have been determined in soils from urban and rural areas of Beijing. The rural area can be divided into plain and mountainous areas which are close to and relatively far from the urban area, respectively. Concentration of BC (5.83 ± 3.05 mg g−1) and BC/TOC concentration ratio (0.37 ± 0.15) in Beijing’s urban soil are high compared with that in world background soils and rural soils of Beijing, suggesting the urban environment to be an essential source and sink of BC. Concentration of BC in the urban area decreases from the inner city to exterior areas, which correlates with the urbanization history of Beijing and infers accumulation of BC in old urban soils. Black carbon in Beijing soils mainly comes from fossil fuel combustion, especially traffic emission. Median PAH concentration in the urban area (502 ng g−1) is one order of magnitude higher than that in the rural plain (148 ng g−1) and mountainous area (146 ng g−1) where PAHs are supposed to mainly come from atmospheric deposition from the urban area. Concentrations of BC correlate significantly with those of PAHs (p < 0.01, except naphthalene) in the urban area and with those of heavier 4-, 5- and 6- ring PAHs (p < 0.01) in the adjacent rural plain area, while there is no significant correlation with any PAH in the farther rural mountainous area.  相似文献   

16.
Black carbon (BC) and total organic carbon (TOC) contents of UK and Norwegian background soils were determined and their relationships with persistent organic pollutants (HCB, PAHs, PCBs, co-planar PCBs, PBDEs and PCDD/Fs) investigated by correlation and regression analyses, to assess their roles in influencing compound partitioning/retention in soils. The 52 soils used were high in TOC (range 54-460 mg/g (mean 256)), while BC only constituted 0.24-1.8% (0.88%) of the TOC. TOC was strongly correlated (p < 0.001) with HCB, PCBs, co-PCBs and PBDEs, but less so with PCDD/Fs (p < 0.05) and PAHs. TOC explained variability in soil content, as follows: HCB, 80%; PCBs, 44%; co-PCBs, 40%; PBDEs, 27%. BC also gave statistically significant correlations with PBDEs (p < 0.001), co-PCBs (p < 0.01) and PCBs, HCB, PCDD/F (p < 0.05); TOC and BC were correlated with each other (p < 0.01). Inferences are made about possible combustion-derived sources, atmospheric transport and air-surface exchange processes for these compounds.  相似文献   

17.
One of the major challenges in developing an effective phytoremediation technology for 2,4,6-trinitrotoluene (TNT) contaminated soils is limited plant uptake resulting from low solubility of TNT. The effectiveness of urea as a solubilizing agent in increasing plant uptake of TNT in hydroponic systems has been documented. Our preliminary greenhouse experiments using urea were also very promising, but further characterization of the performance of urea in highly-complex soil-solution was necessary. The present study investigated the natural retention capacity of four chemically variant soils and optimized the factors influencing the effectiveness of urea in enhancing TNT solubility in the soil solutions. Results show that the extent of TNT sorption and desorption varies with the soil properties, and is mainly dependent on soil organic matter (SOM) content. Hysteretic desorption of TNT in all tested soils suggests irreversible sorption of TNT and indicates the need of using an extractant to increase the release of TNT in soil solutions. Urea significantly (p < 0.0001) enhanced TNT extraction from all soils, by increasing its solubility at the solid/liquid interface. Soil organic matter content and urea application rates showed significant effects, whereas pH did not exert any significant effect on urea catalysis of TNT extraction from soil. The optimum urea application rates (125 or 350 mg kg−1) for maximizing TNT extraction were within the limits set by the agronomic fertilizer-N rates used for major agricultural crops. The data obtained from this batch study will facilitate the optimization of a chemically-catalyzed phytoremediation model for cleaning up TNT-contaminated soils.  相似文献   

18.
Cancer has become a critical health issue in the world heritage city Kandy, Sri Lanka. Polycyclic aromatic hydrocarbons (PAHs), one of persistent organic pollutants, in the atmosphere may be a major etiological factor in lung carcinogenicity. Over the very high concentrations of ambient air PAHs reported in Kandy, this paper is focused on setting priorities to control human exposure to PAHs in prevention of cancer.On re-appraisal of the classical indicator benzo(a)pyrene (B[a]P) for atmospheric PAHs-related carcinogenicity, B[a]P failed to reflect the toxicity completely and may not be the sole indicator for risk assessment studies in complex multi-sourced urban environments. The excess lifetime lung cancer risks of atmospheric PAHs with ‘less than lifetime exposure’ were assessed based on both ‘B[a]P toxic equivalents’ and ‘B[a]P surrogate epidemiological’ approach of risk quantification, over emissions characterized urban, suburban, and rural areas of Kandy. In urban heavy traffic areas, PAH-related additional cancer burden has been 942 million−1 over 30 y of exposure. Over the whole study area, ∑p-PAHs show strong correlation (r = 0.8) to the predicted risk levels. While the urban and suburban predicted cancer risk levels could not show significant correlation to their emission sources indicating the real complexity in mega urban environments, the rural lung cancer risk levels correlated perfectly with the source, firewood combustion.Policy decisions on environment and health could be based on established correlations among ‘emission sources-exposures-health effects’. The priority for “analysis of options and policy formulation to reduce inhalation PAHs exposure of population in Kandy” was considered “moderate to high”.  相似文献   

19.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

20.
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical–chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A “mean sample” for the 14-month period would contain a total PAH concentration of 13 835 ± 1625 pg m−3 and 122 ± 17 pg m−3 of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18 900 ± 2140 pg m−3 of PAHs and 150 ± 97 pg m−3 of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293 ± 1178 pg m−3 for the PAHs and to 97 ± 13 pg m−3 for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号