首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   

2.
Pot experiments were conducted to examine the effects of various fertilizers, as well as soil dilution treatments on the dynamics of soil-borne DDTs [sum of dichlorodiphenyltrichloroethane (DDT), chlorodiphenyldichloroethylene (DDE) and di- chlorodiphenyldichloroethane (DDD)] and hexachlorocyclohexanes (HCHs, sum of α-HCH, β-HCH, γ-HCH and δ-HCH) and their subsequent impacts on the uptake of DDTs and HCHs by a test plant. The results show that the soil residual DDTs and HCHs concentrations in the iron-rich fertilizer-treated soil were significantly lower than those in other fertilizer-treated soils. There was a close relationship between the soil residual DDTs and the plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. A less close relationship between soil residual HCHs and plant tissue HCHs was also observed. Dilution of pesticide-contaminated soil with the non-contaminated soil not only physically reduced the concentration of pesticides in the soil but also enhanced the loss of soil-borne pesticides, possibly through the improvement of soil conditions for microbial degradation. Soil dilution had a better effect on promoting the loss of soil-borne HCHs, relative to soil-borne-DDTs. The research findings obtained from this study have implications for management of heavily contaminated soils with DDTs and HCHs. Remediation of DDTs and HCHs-contaminated soils in a cost-effective way can be achieved by incorporating treatment techniques into conventional agricultural practices. Applications of iron-rich fertilizer and soil dilution treatments could cost-effectively reduce soil-borne DDTs and HCHs, and subsequently the uptake of these organochlorine pesticides by vegetables.  相似文献   

3.
热解吸对土壤中POPs农药的去除及土壤理化性质的影响   总被引:1,自引:0,他引:1  
为探索土壤热解吸修复技术对POPs污染土壤的修复效果及修复后土壤可耕作性,选择北京某农药厂旧址的POPs农药污染土壤,研究了不同温度下热解吸处理后土壤中滴滴涕(DDTs)和六六六(HCHs)各组分的去除率以及土壤理化性质的变化。结果表明,热解吸修复技术可有效去除土壤中POPs农药,其中,p,p’-DDE与α-HCH组分去除率受热解吸温度的影响比其他组分更为明显。∑HCH与∑DDT在310℃、340℃时分别达到97%、99%的去除率,且此时土壤中的污染物含量低于我国《展览会用地土壤环境质量评价标准》,此后去除率受温度的影响不明显。热解吸温度对修复后土壤的理化性质有一定的影响,不同温度影响的程度各不相同,其中,有机质含量与全氮含量分别由0.78%、0.0352%降至0.14%、0.0107%;pH波动幅度较小,由7.80变至8.25;阳离子交换量变化存在波动,但呈整体下降趋势,由7.87 mg/kg降至5.00mg/kg;土壤中速效磷显著增加,由7.59 mg/kg升至21.8 mg/kg。而在最优温度条件下,土壤理化性质受热解吸温度的影响较小。由此可以说明,热解吸技术可以用于POPs污染土壤的修复,选择适当的热解吸温度对土壤的可耕作性影响有限,因而是一种潜在的绿色修复技术。  相似文献   

4.
In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO4-treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions.  相似文献   

5.
The levels of hexachlorocyclohexanes (HCHs) in the sediments from Haihe Plain, China, were measured by a gas chromatograph with a 63Ni microelectron capture detector. The spatial distributions, possible sources, and potential ecological risks of these compounds were analyzed. The residual level of total HCHs was 33.84?±?173.37 ng?g?1 dry weight (d.w.) with ranges of 0.13?~?1,107.41 ng?g?1 d.w. Much higher ΣHCH contents were found in the lower reaches of some rivers and in the mouth of the main stream receiving tributaries. The predominance of β-HCH (36 %) in the sediments was similar to that in the soils from Haihe Plain. The high percentages of γ-HCH (23–41 %) could be detected at 25 % of the sampling sites in the seven river systems. There were statistically significant positive relationships between the contents of HCHs and total organic carbon. Lindane was identified as the primary source of HCHs in the sediments, and it seemed that recent illegal lindane inputs still existed in some areas in Haihe Plain, as indicated by the α-/γ-HCH and β-/(α?+?γ)-HCH ratios. Severe potential ecological risks of γ-HCH to benthic organisms at some sampling sites were found based on the consensus-based sediment quality guidelines.  相似文献   

6.
Tibetan Plateau is the world’s highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p′-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm?2 year?1, respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm?2 year?1 in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p′-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p′-DDX was 44 pg cm?2 year?1, which appeared in the mid-1960s. Local emission of p,p′-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.  相似文献   

7.
Residual levels and enantiomeric signatures of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) in surface sediments from Xiangshan Bay, East China Sea were investigated. The concentrations of ∑HCHs (sums of α-, β-, γ-, and δ-HCH) and ∑DDTs (sums of p, p'-DDT, p, p'-DDD,p, p'-DDE, o, p'-DDT, and o, p'-DDD) ranged from 0.14 to 0.67 ng g?1 and 0.61 to 22.38 ng g?1, respectively. A slight potential health risk to the organism was then indicated for the residual levels of DDTs according to the ERL/ERM guidelines. Moreover, the predominant β-HCH implied that the technical HCH contamination was mainly due to the historical usage. But the high ratio of DDT/∑DDTs depicted a cocktail input pattern of fresh and weathered DDTs. The enantiomeric fractions (EFs) of α-HCH, o, p'-DDT, and o, p'-DDD were also determined. The degradation of α-HCH was enantioselective in all sediments samples, resulting in an enrichment of (-)-enantiomers. However, the racemic residues of o, p'-DDT and o, p'-DDD were observed in all sediments samples.  相似文献   

8.
Organochlorine pesticides (OCPs), a potential threat to ecosystems and human health, are still widely residual in the environment. The residual levels of OCPs in the water and gas phase were monitored in Lake Chaohu, a large Chinese lake, from March 2010 to February 2011. Nineteen types of OCPs were detected in the water with a total concentration of 7.27?±?3.32 ng/l. Aldrin, DDTs and HCHs were the major OCPs in the water, accounting for 38.3 %, 28.9 % and 23.6 % of the total, respectively. The highest mean concentration (12.32 ng/l) in the water was found in September, while the lowest (1.74 ng/l) was found in November. Twenty types of gaseous OCPs were detected in the atmosphere with a total concentration of 542.0?±?636.5 pg/m3. Endosulfan, DDTs and chlordane were the major gaseous OCPs in the atmosphere, accounting for 48.9 %, 22.5 % and 14.4 % of the total, respectively. The mean concentration of gaseous OCPs was significantly higher in summer than in winter. o,p′-DDE was the main metabolite of DDT in both the water and gas phase. Of the HCHs, 52.3 % existed as β-HCH in the water, while α-HCH (37.9 %) and γ-HCH (30.9 %) were dominant isomers in the gas phase. The average fluxes were ?21.11, ?3.30, ?152.41, ?35.50 and ?1314.15 ng/(m2?day) for α-HCH, γ-HCH, HCB, DDT and DDE, respectively. The water–gas exchanges of the five types of OCPs indicate that water was the main potential source of gaseous OCPs in the atmosphere. A sensitivity analysis indicated that the water-gas flux of α-HCH, γ-HCH and DDT is more vulnerable than that of HCB and DDE to the variation of the parameters. The possible source of the HCHs in the water was from the historical usage of lindane; however, that in the air was mainly from the recent usage of lindane. The technical DDT and dicofol might be the source of DDTs in the water and air.  相似文献   

9.
通过序批实验和土柱淋洗实验研究了由生物表面活性剂鼠李糖脂(RL)与非离子化学表面活性剂十二烷基醇聚氧乙烯(6)醚(POE(6))混合得到的复配试剂洗脱污染土壤中多氯联苯(PCBs)的作用效果及其作用机理。结果表明,同一土样中,从批实验得到的PCBs洗脱率略高于土柱淋洗实验。RL与POE(6)两种单一试剂对人工污染土样中的PCBs洗脱率均大于60%,而对陈化土样中的洗脱率均不到20%,且土壤中的TOC含量越高,PCBs的洗脱率越低。在质量浓度为301 mg/L(10 CMC)及1 505 mg/L(50 CMC)的RL-POE(6)复配试剂中,RL与POE(6)对人工污染土壤中PCBs的洗脱具有一定的协同作用。当复配试剂的浓度为301 mg/L时,RL与POE(6)对陈化土样中PCBs的洗脱没有协同作用;但当RL-POE(6)的浓度增加到1 505 mg/L时,RL与POE(6)对陈化土样中PCBs的洗脱具有明显的协同作用。  相似文献   

10.
Sphingobium yanoikuyae B1 is able to degrade a range of polycyclic aromatic hydrocarbons (PAHs) and as a sphingomonad belongs to one of the dominant genera found in PAH-contaminated soils. We examined the ecological effect that soil inoculation with S. yanoikuyae B1 has on the native bacterial community in three different soils: aged PAH-contaminated soil from an industrial site, compost freshly contaminated with PAHs and un-contaminated compost. Survival of S. yanoikuyae B1 was dependent on the presence of PAHs, and the strain was unable to colonize un-contaminated compost. Inoculation with S. yanoikuyae B1 did not cause extensive changes in the native bacterial community of either soil, as assessed by denaturing gel electrophoresis, but its presence led to an increase in the population level of two other species in the aged contaminated soil community and appeared to have an antagonistic affect on several members of the contaminated compost community, indicating niche competition.  相似文献   

11.
The tissue and organs (muscle, brain, liver, and gill) of four species of freshwater fish from Lake Baiyangdian were analyzed for hexachlorocyclohexanes (HCHs) and dichloro-diphenyl-trichloroethanes (DDTs). The distribution characteristics were analyzed for HCHs and DDTs in various tissue and organs, which determined the health risks for humans. The research results showed that the wet weight content of all HCHs (∑HCHs) ranged from 0.05?~?14.53 ng?g?1, with a mean of 3.47 ng?g?1. The wet weight content of all DDTs (∑DDTs) ranged from ND to 8.51 ng?g?1, with a mean of 2.41 ng?g?1. For the various species of fish, the residual level of ∑HCHs was relatively higher in chub and grass carp and lowest in snakehead. The residual level of ∑DDTs was the highest in snakehead and did not exhibit a significant variance in the other three species. For the various tissues and organs, the contents of HCHs and DDTs were both highest in the fish liver, second highest in the fish gill, and lowest in the fish brain and muscle. Among the four types of isomers, the residual level of γ-HCH was relatively higher, while the residual level of α-HCH was the lowest. The content of p,p′-DDE was significantly greater to other forms of DDT and its isomer. The residual levels of HCHs and DDTs in fish were both below the national standard. However, the carcinogenic risk from the HCHs in parts of the tissue and organs of four fish species in Lake Baiyangdian exceeded the screen value threshold set by USEPA.  相似文献   

12.
Thirty-two topsoil samples were collected to analyze the residue levels of organochlorine pesticides (OCPs) in topsoil of arid and semiarid areas of northwest China in 2011. Results showed that DDTs were the dominant contaminants with a mean concentration of 12.52 ng/g. The spatial distribution characteristics indicated that α-hexachlorocyclohexanes (HCHs) were mainly used in rural sites, whereas hexachlorobenzene (HCB) and endosulfan were detected mostly in urban areas. DDTs, heptachlor, and chlordane were found almost equally in both urban and rural areas. Source identification revealed that the current levels of HCHs in soils were attributable to the residues from their historical use and fresh usage of lindane (γ-HCH). DDTs were mainly from historical use and fresh usage of dicofol, and HCB was emitted from the chemical industry. It was also found that the current soil levels of heptachlor were mainly from its historical usage, endosulfan from fresh input, and chlordane from long-range atmospheric transport, respectively. The noncarcinogenic health risk assessment with a model was also conducted using USEPA standards for adults and children. Results indicated that health risk under nondietary exposure to OCPs decreased in the sequence of ΣDDT?>?ΣHCH?>?HCB?>?Σheptachlor?>?Σendosulfan?>?Σchlordane. According to the reference dose from the USEPA, the health risk under nondietary exposure to OCPs in the soil samples was at a relatively safe level.  相似文献   

13.
The content of 21 organochlorine pesticides were studied in vegetation samples of a highly contaminated area by isomers of hexachlorocyclohexane (HCH) located close to a former industrial area in Galicia (NW Spain). Five species of plants were collected at different points of the contaminated area and the different parts of the plants were separated in order to study differences in accumulation capabilities. Samples were extracted employing microwave energy followed by a clean-up step using solid phase extraction and finally determined by GC–ECD. The results obtained show that the most abundant pesticides are HCHs isomers, being the main isomers β-HCH and -HCH in all samples whereas δ-HCH and γ-HCH were at lower levels. Some other pesticides such as p,p′-DDT, p,p′-DDD and p,p′-DDE were also present in much lower amount in some of the samples. Several degradation products of HCH were also identified in some samples by GC–MS.  相似文献   

14.
15.
This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly α-, β-, γ- and δ-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The β-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil → root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil → air → shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles → shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.  相似文献   

16.
Intensive remediation of abandoned former organochlorine pesticides (OCPs) manufacturing areas is necessary because the central and surrounding soils contaminated by OCPs are harmful to crop production and food safety. Organochlorine and its residues are persistent in environments and difficult to remove from contaminated soils due to their low solubility and higher sorption to the soils. We performed a comprehensive study on the remediation of OCPs-contaminated soils using thermal desorption technique and solvent washing approaches. The tested soil was thermally treated at 225, 325, 400, and 500 °C for 10, 20, 30, 45, 60, and 90 min, respectively. In addition, we tested soil washing with several organic solvents including n-alcohols and surfactants. The optimal ratio of soil/solvent was tested, and the recycling of used ethanol was investigated. Finally, activities of polyphenol oxidase (PPO), urease (URE), alkaline phosphatase, acid phosphatase (ACP), and invertase (INV) were assayed in the treated soils. The tested soil was thermally treated at 500 °C for 30 min, and the concentration of contaminants in soil was decreased from 3,115.77 to 0.33 mg kg?1. The thermal desorption in soil was governed by the first-order kinetics model. For the chemical washing experiment, ethanol showed a higher efficiency than any other solvent. Using a 1:20 ratio of soil/solvent, the maximum removal of OCPs was achieved within 15 min. Under this condition, approximately 87 % of OCPs was removed from the soils. More than 90 % of ethanol in the spent wash fluid could be recovered. Activities of some enzymes in soils were increased after ethanol treatment. But ALP, ACP, and INV activities were decreased and PPO and URE showed slightly higher activities following remediation by thermal treatment. Both heating temperature and time were the key factors for thermal desorption of OCPs. The n-alcohol solvent showed higher removal of OCPs from soils than surfactants. The highly efficient removal of OCPs from soil was achieved using ethanol. More than 90 % of ethanol could be recovered and be reused following distillation. This study provides a cost-effective and highly efficient way to remediate the OCPs-contaminated soils.  相似文献   

17.
Earthworms were exposed to artificially contaminated soils of DE-71 and DE-79 to investigate the bioaccumulation and bioavailability of PBDEs in soil. All major congeners were bioavailable to earthworms. The uptake and elimination rate coefficients of PBDEs decreased with their logKows. The biota soil accumulation factors of PBDEs also declined with logKow. These may be due to the large molecular size and the high affinity of PBDEs to soil particles. The concentrations extracted by Tenax for 6 h correlated very well with those found in earthworms, suggesting that the bioavailability of PBDEs in soil is related to the fraction of rapid desorption from soil. This also indicates that 6 h Tenax extraction is a good proxy for the bioavailability of PBDEs to earthworms in soil. The BSAFs of PBDEs in aged soil decreased 22-84% compared to freshly spiked soil, indicating that aging may diminish the bioavailability of PBDEs in soil significantly.  相似文献   

18.
Cao J  Guo H  Zhu HM  Jiang L  Yang H 《Chemosphere》2008,70(11):2127-2134
Sorption and desorption of the herbicide prometryne in two types of soil subjected to the changes of pH and soil organic matter and surfactant were investigated. The sorption and desorption isotherms were expressed by the Freundlich equation. Freundlich Kf and n values indicate that soil organic matter was the major factor affecting prometryne behavior in the test soils. We also quantified the prometryne sorption and desorption behavior in soils, which arose from the application of Triton X-100 (TX100), a nonionic surfactant and change in pH. Application of TX100 led to a general decrease in prometryne sorption to the soils and an increase in desorption from the soils when applied in dosages of the critical micella concentration (CMC) 0.5, 1 and 2. At the concentration below the CMC, the non-ionic surfactant showed a tendency to decrease prometryne sorption and desorption. It appeared that TX100 dosages above CMC were required to effectively mobilize prometryne. Results indicate that the maximum prometryne sorption and minimum prometryne desorption in soils were achieved when the solution pH was near its pKa. Finally, the influence of TX100 on the mobility of prometryne in soils using soil thin-layer chromatography was examined.  相似文献   

19.
This investigation was undertaken to understand the temporal trend, the spatial distribution and the residue level of dichloro-diphenyl-trichloroethanes (DDTs) and hexachlorobenzenes(HCHs) in bivalves from the coast of the South China in recent years. Jinjiang oysters (Crassostrea rivularis) were sampled from 15 bays along the coast of Guangdong province, China between 2003 and 2007. Gas chromatography with electron capture detector was used to quantify the contents of HCH isomers (α-, β-, γ-, δ-HCH), DDT isomers (p,p′-, o,p′-DDT), p,p′-DDD and p,p′-DDE in the oyster tissues. The results demonstrate that annual level of DDTs in the tissue increase throughout the study, particularly between 2004 and 2006. The DDTs content in the tissue varied significantly among sampling regions and some sampling sites (p < 0.05). On the other hand, the HCHs content was significantly lower than DDTs content in the tissue (p < 0.01), and remain constant among sampling years, sampling regions and sampling sites (p > 0.10). Predominance of isomer form of DDTs and higher ratio of γ-HCH/HCHs at some sites indicated that recent input of DDT and lindane in the coastal waters of Guangdong, which might be caused by dicofol spraying in crop planting and lacquer painting on fisher boat. In the soft tissues of the oysters, the highest content of HCHs was 1.21 ng/g (wet weight), and DDTs levels ranged from 0.11 ng/g to 76.3 ng/g (wet weight), far below the Maximum Residual Limits in China and many developed nations.  相似文献   

20.
This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg?1) and γ-HCH (lindane, 25 mg kg?1) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/FeII, Na2S2O8 alone, Na2S2O8/FeII, and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by FeII-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/FeII > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号