首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   

2.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

3.
The effects of ozone (O3) exposure under different water availabilities were studied in two Mediterranean tree species: Quercus ilex and Ceratonia siliqua. Plants were exposed to different O3 concentrations in open top chambers (charcoal-filtered air (CF), non-filtered air (NF)) and non-filtered air plus 40 ppbv of O3 ((7:00–17:00 solar time) (NF+)) during 2 years, and to different water regimes (IR, sample irrigation, and WS, reduced water dose to 50%) through the last of those 2 years. AOT40 in the NF+ treatment was 59265 ppbv h (from March 1999 to August 1999) while in the NF treatment, the AOT40 was 6727 ppbv h for the same period. AOT40 was always 0 in the CF treatment. WS plants presented lower stomatal conductances and net photosynthetic rates, and higher foliar N concentrations than IR plants in both species. The irrigation treatment did not change the response trends to ozone in Q. ilex, the most sensitive species to O3 ambient concentrations, but it changed those of C. siliqua, the least sensitive species, since its ozone-fumigated WS plants did not decrease their net photosynthetic rates nor their biomass accumulation as it happened to its ozone-fumigated IR plants. These results show interspecific variations in O3 sensitivity under different water availabilities.  相似文献   

4.
A 2-year open-top chamber experiment with field-grown winter wheat (Triticum aestivum L. cv. Astron) was conducted to examine the effects of ozone on plant growth and selected groups of soil mesofauna in the rhizosphere. From May through June in each year, plants were exposed to two levels of O3: non-filtered (NF) ambient air or NF+ 40 ppb O3 (NF+). During O3 exposure, soil sampling was performed at two dates according to different plant growth stages. O3 exposure reduced above- and below-ground plant biomass in the first year, but had little effect in the second year. The individual density of enchytraeids, collembolans and soil mites decreased significantly in the rhizosphere of plants exposed to NF+ in both years. Differences were highest around anthesis, i.e. when plants are physiologically most active. The results suggest that elevated O3 concentrations may influence the dynamic of decomposition processes and the turnover of nutrients.  相似文献   

5.
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.  相似文献   

6.
Shanghai Meteorological Administration has established a volatile organic compounds (VOCs) laboratory and an observational network for VOCs and ozone (O3) measurements in the city of Shanghai. In this study, the measured VOCs and O3 concentrations from 15 November (15-Nov) to 26 November (26-Nov) of 2005 in Shanghai show that there are strong day-to-day and diurnal variations. The measured O3 and VOCs concentrations have very different characterizations between the two periods. During 15-Nov to 21-Nov (defined as the first period), VOCs and O3 concentrations are lower than the values during 22-Nov to 28-Nov (defined as the second period). There is a strong diurnal variation of O3 during the second period with maximum concentrations of 40–80 ppbv at noontime, and minimum concentrations at nighttime. By contrast, during the first period, the diurnal variation of O3 is in an irregular pattern with maximum concentrations of only 20–30 ppbv. The VOC concentrations change rapidly from 30–50 ppbv during the first period to 80–100 ppbv during the second period. Two chemical models are applied to interpret the measurements. One model is a regional chemical/dynamical model (WRF-Chem) and another is a detailed chemical mechanism model (NCAR MM). Model analysis shows that the meteorological conditions are very different between the two periods, and are mainly responsible for the different chemical characterizations of O3 and VOCs between the two periods. During the first period, meteorological conditions are characterized by cloudy sky and high-surface winds in Shanghai, resulting in a higher nighttime planetary boundary layer (PBL) and faster transport of air pollutants. By contrast, during the second period, the meteorological conditions are characterized by clear sky and weak surface winds, resulting in a lower nighttime PBL and slower transport of air pollutants. The chemical mechanism model calculation shows that different VOC species has very different contributions to the high-ozone concentrations during the second period. Alkane (40 ppbv) and aromatic (30 ppbv) are among the highest VOC concentrations observed in Shanghai. The analysis suggests that the aromatic is a main contributor for the O3 chemical production in Shanghai, with approximately 79% of the O3 being produced by aromatic. This analysis implies that future increase in VOC (especially aromatic) emissions could lead to significant increase in O3 concentrations in Shanghai.  相似文献   

7.
The effect of meteorological variables on surface ozone (O3) concentrations was analysed based on temporal variation of linear correlation and artificial neural network (ANN) models defined by genetic algorithms (GAs). ANN models were also used to predict the daily average concentration of this air pollutant in Campo Grande, Brazil. Three methodologies were applied using GAs, two of them considering threshold models. In these models, the variables selected to define different regimes were daily average O3 concentration, relative humidity and solar radiation. The threshold model that considers two O3 regimes was the one that correctly describes the effect of important meteorological variables in O3 behaviour, presenting also a good predictive performance. Solar radiation, relative humidity and rainfall were considered significant for both O3 regimes; however, wind speed (dispersion effect) was only significant for high concentrations. According to this model, high O3 concentrations corresponded to high solar radiation, low relative humidity and wind speed. This model showed to be a powerful tool to interpret the O3 behaviour, being useful to define policy strategies for human health protection regarding air pollution.  相似文献   

8.
Measurements of ozone concentration in the ambient air of the city of Baghdad were carried out for the period October 1983 to October 1984. The O3, probably of local origin, showed a typical diurnal and seasonal variation. Maximum daily 1-h O3 concentrations higher than the international ambient air quality standards were observed regularly during the summer months. High O3 concentrations during the night were also observed. Scatter diagrams were used to relate the O3 concentrations with temperature, solar radiation and humidity.  相似文献   

9.
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 °C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6 ± 1.6 μg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 μg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2–3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.  相似文献   

10.
An assessment of the effects of tropospheric ozone (O3) levels and substrate nitrogen (N) supplementation, singly and in combination, on phenology, growth and nutritive quality of Briza maxima was carried out. Two serial experiments were developed in Open-Top Chambers (OTC) using three O3 and three N levels. Increased O3 exposure did not affect the biomass-related parameters, but enhanced senescence, increased fiber foliar content (especially lignin concentration) and reduced plant life span; these effects were related to senescence acceleration induced by the pollutant. Added N increased plant biomass production and improved nutritive quality by decreasing foliar fiber concentration. Interestingly, the effects of N supplementation depended on meteorological conditions and plant physiological activity. N supplementation counteracted the O3-induced senescence but did not modifiy the effects on nutritive quality. Nutritive quality and phenology should be considered in new definitions of the O3 limits for the protection of herbaceous vegetation.  相似文献   

11.
Abstract

Consumer products can emit significant quantities of terpenes, which can react with ozone (O3). Resulting byproducts include compounds with low vapor pressures that contribute to the growth of secondary organic aerosols (SOAs). The focus of this study was to evaluate the potential for SOA growth, in the presence of O3, following the use of a lime-scented liquid air freshener, a pine-scented solid air freshener, a lemon-scented general-purpose cleaner, a wood floor cleaner, and a perfume. Two chamber experiments were performed for each of these five terpene-containing agents, one at an elevated O3 concentration and the other at a lower O3 concentration. Particle number and mass concentrations increased and O3 concentrations decreased during each experiment. Experiments with terpene-based air fresheners produced the highest increases in particle number and mass concentrations. The results of this study clearly demonstrate that homogeneous reactions between O3 and terpenes from various consumer products can lead to increases in fine particle mass concentrations when these products are used indoors. Particle increases can occur during periods of elevated outdoor O3 concentrations or indoor O3 generation, coupled with elevated terpene releases. Human exposure to fine particles can be reduced by minimizing indoor terpene concentrations or O3 concentrations.  相似文献   

12.
Cutleaf coneflower (Rudbeckia laciniata L.) seedlings were placed into open-top chambers in May, 2004 and fumigated for 12 wks. Nine chambers were fumigated with either carbon-filtered air (CF), non-filtered air (NF) or twice-ambient (2×) ozone (O3). Ethylenediurea (EDU) was applied as a foliar spray weekly at 0 (control), 200, 400 or 600 ppm. Foliar injury occurred at ambient (30%) and elevated O3 (100%). Elevated O3 resulted in significant decreases in biomass and nutritive quality. Ethylenediurea reduced percent of leaves injured, but decreased root and total biomass. Foliar concentrations of cell-wall constituents were not affected by EDU alone; however, EDU × O3 interactions were observed for total cell-wall constituents and lignocellulose fraction. Our results demonstrated that O3 altered the physiology and productivity of cutleaf coneflower, and although reducing visible injury EDU may be phytotoxic at higher concentrations.  相似文献   

13.
A study was designed to examine responses of loblolly pine (Pinus taeda) to chronic exposure to ozone (O3) in the field. Seedlings of four full-sib families of loblolly pine were planted in a field near Raleigh, NC, and exposed daily (May 27 to October 24, 1985) in open-top chambers to O3 ranging from 0.5 to 1.96 times the O3 concentration in non-filtered (NF) air. One-fourth of the plants in each plot were removed during each of two harvests (August and October) to measure effects of O3 on plant growth. Plants of each family exhibited foliar symptoms characteristic of O3 injury after five months of exposure to any greater-than-ambient O3 concentration, and one family exhibited symptoms after five months of exposure to NF air. Ozone dose-plant response relationships were quantified by regression for stem height, stem diameter, biomass, and other plant morphological and yield characteristics. All relationships were linear for three families, but one family exhibited no significant growth response relationship of O3 dose. Dose-response equations suggest a maximum growth suppression of 10 percent for NF air compared to charcoal-filtered air (i.e., 0.5 × NF) in the first season of exposure.  相似文献   

14.
Toluene is ubiquitous in urban atmospheres and is a precursor to tropospheric ozone and aerosol (smog). An important characteristic of toluene chemistry is the tendency of some degradation products (e.g., cresols and methyl-catechols) to form organic nitro and nitrate compounds that sequester NOx (NO and NO2) from active participation in smog formation. Explaining the NOx sinks in toluene degradation has made mechanism development more difficult for toluene than for many other organic compounds. Another challenge for toluene is explaining sources of radicals early in the degradation process. This paper describes the development of a new condensed toluene mechanism consisting of 26 reactions, and evaluates the performance of CB05 with this new toluene scheme (Toluene Update, TU) against 38 chamber experiments at 7 different environmental chambers, and provides recommendations for future developments. CB05 with the current toluene mechanism (CB05-Base) under-predicted the maximum O3 and O3 production rate for many of these toluene–NOx chamber experiments, especially under low-NOx conditions ([NOx]t=0 < 100 ppb). CB05 with the new toluene mechanism (CB05-TU) includes changes to the yields and reactions of cresols and ring-opening products, and showed better performance than CB05-Base in predicting the maximum O3, O3 formation rate, NOx removal rate and cresol concentration. Additional environmental chamber simulations with xylene–NOx experiments showed that the TU mechanism updates tended to improve mechanism performance for xylene.  相似文献   

15.
In this study, we estimate yield losses and economic damage of two major crops (winter wheat and rabi rice) due to surface ozone (O3) exposure using hourly O3 concentrations for the period 2002–2007 in India. This study estimates crop yield losses according to two indices of O3 exposure: 7-h seasonal daytime (0900–1600 hours) mean measured O3 concentration (M7) and AOT40 (accumulation exposure of O3 concentration over a threshold of 40 parts per billion by volume during daylight hours (0700–1800 hours), established by field studies. Our results indicate that relative yield loss from 5 to 11 % (6–30 %) for winter wheat and 3–6 % (9–16 %) for rabi rice using M7 (AOT40) index of the mean total winter wheat 81 million metric tons (Mt) and rabi rice 12 Mt production per year for the period 2002–2007. The estimated mean crop production loss (CPL) for winter wheat are from 9 to 29 Mt, account for economic cost loss was from 1,222 to 4,091 million US$ annually. Similarly, the mean CPL for rabi rice are from 0.64 to 2.1 Mt, worth 86–276 million US$. Our calculated winter wheat and rabi rice losses agree well with previous results, providing the further evidence that large crop yield losses occurring in India due to current O3 concentration and further elevated O3 concentration in future may pose threat to food security.  相似文献   

16.
The atmospheric chemical process was simulated using the Carbon Bond 4 (CB-4) model, the aqueous-phase chemistry in Regional Acid Deposition Model and the thermodynamic equilibrium relation of aerosols with the emission inventories of the Emission Database for Global Atmospheric Research, the database of China and South Korea and the Mesoscale Model version 2 (MM5) meteorological fields to examine the spatial distributions of the acidic pollutant concentrations in East Asia for the case of the long-lasting Yellow Sand event in April 1998. The present models simulate quite well the observed general trend and the diurnal variation of concentrations of gaseous pollutants, especially for O3 concentration. However, the model underestimates SO2 and NOx concentration but overestimates O3 concentration largely due to uncertainty in NOx and VOC emissions. It is found that the simulated gaseous pollutants such as SO2, NOx, and NH3 are not transported far away from the source regions but show significant diurnal variations of their concentrations. However, the daily variations of the concentrations are not significant due to invariant emission rates. On the other hand, concentrations of the transformed pollutants including SO42−, NH4+, and NO3 are found to have significant daily variations but little diurnal variations. The model-estimated deposition indicates that dry deposition is largely contributed by gaseous pollutants while wet deposition of pollutants is mainly contributed by the transformed pollutants.  相似文献   

17.
Since 2005, Shanghai Meteorological Bureau (SMB) has established an observational network for measuring VOC, NOx, O3 and aerosols in the Shanghai region. In this study, a rapid O3 changes from Aug/02/2007 to Aug/11/2007 was observed in the region. During this 10 day period, the noontime O3 maximum decreased from 100 to 130 ppbv to about 20–30 ppbv. In order to analyze the processes in controlling this rapid change of O3 during this short period, a newly developed regional chemical/dynamical model (WRF-Chem) is applied to study O3 variability in the Shanghai region. The model performances are evaluated by comparing the model calculation to the measurement. The result shows that the calculated magnitudes and diurnal variations of O3 are close to the measured results in city sites, but are underestimated at a rural petroleum industrial site, suggesting that the emissions from petroleum factories around this rural site are significantly underestimated and need to be improved. The calculated rapid changes of O3 concentrations, O3 precursors, and aerosols are consistent with the measured results, suggesting that the model is suitable to study the causes of this rapid O3 change. The model analysis indicates that weather conditions play important roles in controlling the surface O3 in the Shanghai region. During summer, there is a persistent sub-tropical high pressure system (SUBH) in southeast of Shanghai over Pacific Ocean. During the earlier time of the period (Aug/02–Aug/05), the SUBH system was weak, resulting in weak surface winds. With the calm winds, a noticeable noontime sea-breeze produced an inflow from ocean to land, generating a cycling pattern of wind directions. As a result, the high O3 concentrations were trapped in the Shanghai region, with a maximum concentration of 100–130 ppbv. By contrast, during the later time of the period (Aug/06–Aug/11), the SUBH was enhanced, resulting in strong surface winds. The high O3 concentrations formed in the city were rapidly transported to the downwind region of the city, resulting in low O3 concentrations in the Shanghai region. This study illustrates that the WRF-Chem model is a useful tool for studying the high variability of O3 concentrations in Shanghai, which has important implication for the prediction of high O3 concentration events in the city.  相似文献   

18.
19.
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction.  相似文献   

20.
A design for constructing experimental mixed-pollutant exposure profiles that reflect regional O3 and SO2 ambient air quality is described. The profiles were developed using hour-by-hour O3 and SO2 concentration data from monitoring sites in the southeastern United States where slash pine is indigenous. Only sites designated rural or remote, with co-monitored O3 and SO2, and at least 75% of the hourly values reported for the period April– October, were used. Each site was characterized by concentration, frequency of occurrence and duration of concentration values, length of time between episodes, and frequency of cooccurrence. A base profile, a 30-day hour-by-hour concentration regime, was constructed using averaged air quality characteristics from the selected sites. Using the base profile, additional regimes were constructed by increasing the concentration of all hourly values above a designated minimum, or by increasing the frequency of occurrence of selected hourly concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号