首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
With the analysis of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and sixteen polycyclic aromatic hydrocarbons (PAHs) in sediments from the Shenzhen River, South China, the ecological risks associated were evaluated using Hakanson’s method (for the metals) and the Effect Range Low/Effect Range Median (ERL/ERM) method (for the PAHs). The result shows concentrations of heavy metal in the order Zn?>?Cu?>?Cr?>?Ni?>?Pb?>?As?>?Cd?>?Hg, and among which the Zn, Cu, Ni, and Pb are exceeding the maximum contaminant level for sediments while those of PAHs are far below. The potential ecological risk index value for the heavy metals in the sediment samples was 261.90, which is in the moderate risk category. Total PAH concentrations in the sediments ranged from 1,028 to 1,120 ng/g, which are all far lower than the sediment guideline concentration of 4,022 ng/g, indicating that the risks of biological impacts caused by PAHs in Shenzhen River sediments are, therefore, relatively low. Besides, the fluorene concentration was above the ERL, and would potentially cause negative biological effects in the Shenzhen River. Heavy metals risks are suggested among the most important concerns that the environmental recover measures pay attention to.  相似文献   

2.
Heavy metals in coastal wetland sediments of the Pearl River Estuary, China   总被引:12,自引:0,他引:12  
Sediment quality in coastal wetlands of the Pearl River Estuary was concerned since the wetlands were used for land reclamation, aquaculture and wildlife protection, and meanwhile served as one of the main ultimate sinks for large amount of heavy metals discharged from the rapidly developing Pearl River Delta. Total concentrations of heavy metal, such as Zn, Ni, Cr, Cu, Pb, and Cd, and their chemical speciation were investigated. Results showed that the sediments were significantly contaminated by Cd, Zn and Ni with concentration ranges of 2.79-4.65, 239.4-345.7 and 24.8-122.1mg/kg, respectively. A major portion (34.6-46.8%) of Pb, Cd, and Zn was strongly associated with exchangeable fractions, while Cu, Ni and Cr were predominantly associated with organic fractions, residual, and Fe-Mn oxide. Cd and Zn would be the main potential risk and the sediment quality is no longer meeting the demand of the current wetland utilization strategies.  相似文献   

3.
Li W  Shi Y  Gao L  Liu J  Cai Y 《Chemosphere》2012,89(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L−1), while quinolones were prominent in sediments (65.5-1166 μg kg−1) and aquatic plants (8.37-6532 μg kg−1). Quinolones (17.8-167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

4.
《Chemosphere》2013,90(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86–1563 ng L−1), while quinolones were prominent in sediments (65.5–1166 μg kg−1) and aquatic plants (8.37–6532 μg kg−1). Quinolones (17.8–167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

5.
Heavy metals in agricultural soils of the Pearl River Delta,South China   总被引:49,自引:0,他引:49  
There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils.  相似文献   

6.
Heavy metals in plants and phytoremediation   总被引:2,自引:0,他引:2  
GOAL, SCOPE AND BACKGROUND: In some cases, soil, water and food are heavily polluted by heavy metals in China. To use plants to remediate heavy metal pollution would be an effective technique in pollution control. The accumulation of heavy metals in plants and the role of plants in removing pollutants should be understood in order to implement phytoremediation, which makes use of plants to extract, transfer and stabilize heavy metals from soil and water. METHODS: The information has been compiled from Chinese publications stemming mostly from the last decade, to show the research results on heavy metals in plants and the role of plants in controlling heavy metal pollution, and to provide a general outlook of phytoremediation in China. Related references from scientific journals and university journals are searched and summarized in sections concerning the accumulation of heavy metals in plants, plants for heavy metal purification and phytoremediation techniques. RESULTS AND DISCUSSION: Plants can take up heavy metals by their roots, or even via their stems and leaves, and accumulate them in their organs. Plants take up elements selectively. Accumulation and distribution of heavy metals in the plant depends on the plant species, element species, chemical and bioavailiability, redox, pH, cation exchange capacity, dissolved oxygen, temperature and secretion of roots. Plants are employed in the decontamination of heavy metals from polluted water and have demonstrated high performances in treating mineral tailing water and industrial effluents. The purification capacity of heavy metals by plants are affected by several factors, such as the concentration of the heavy metals, species of elements, plant species, exposure duration, temperature and pH. CONCLUSIONS: Phytoremediation, which makes use of vegetation to remove, detoxify, or stabilize persistent pollutants, is a green and environmentally-friendly tool for cleaning polluted soil and water. The advantage of high biomass productive and easy disposal makes plants most useful to remediate heavy metals on site. RECOMMENDATIONS AND OUTLOOK: Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.  相似文献   

7.
Heavy metals of the Tibetan top soils   总被引:1,自引:0,他引:1  

Objective

Due to its high elevation, rare human activities and proximity to south Asia where industries are highly developed, it is required to investigate the fragile environment of the Tibetan Plateau. We are aiming to obtain the concentration level, source, spatial distribution, temporal variation and potential environmental risk of Tibetan soils.

Methods

A total of 128 surf ace soil samples were collected and analyzed f or V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb, and an additional 111 samples were analyzed f or Hg and total organic carbon. Concentration comparisons coupled with multivariate statistics were used to analysis the sources of elements of soils. We also carried out Risk assessment on the soils.

Results

Concentrations of Hg, Cr, Ni, Cd and Pb are slightly higher than those of the late 1970s. Concentrations of Cr and Ni are higher than averaged world background values. Tibetan soils present a high natural As concentration level.

Discussion

Anthropogenic sources may partly contribute to the elevated Hg, Cd and Pb concentrations. Cr and Ni are mainly originated from soil parent materials. Soil elements in Anduo and Qamdo regions may threaten the health of local people.

Conclusion

Heavy metal elements of Tibetan Plateau are mainly from the natural source. Arsenic present a high background level. Soil elements in Anduo and Qamdo regions may threaten the health of local people, which should be of concern to scientists and the government.  相似文献   

8.
Anthropogenic activities could result in increasing concentrations of heavy metals in soil and deteriorating in soil environmental quality. Topsoil samples from a typical industrial area, Shiting River Valley, Sichuan, Southwest China, were collected and determined for the concentrations of Cu, Zn, Cr, Cd, As, and Hg. The mean concentrations of these metals were lower than the national threshold values, but were slightly higher than their corresponding background values, indicating enrichment of these metals in soils in the valley, especially for Cu, Zn, and Hg. The topsoils in this area demonstrated moderate pollution and low potential ecological risk. Principal component analysis coupled with cluster analysis was applied to analyze the data and identified possible sources of these heavy metals; the results showed that soil Cd, Hg, As, Cu, and Zn were predominantly controlled by human activities, whereas Cr was mainly from the parent material. The spatial distribution of the heavy metals varied distinctly and was closely correlated to local anthropogenic activities. Furthermore, the concentrations of heavy metals in the industrial land demonstrated relatively higher levels than those of other land use patterns. Soil metal concentrations decreased with the distance increase from the traffic highway (0–1.0 km) and water system (0–2.0 km). Additionally, soil properties, especially pH and soil organic matter, were found to be important factors in the distribution and composition of metals.  相似文献   

9.
This article presents basic data on the content of Cr, Fe, Ni, Cu, Zn, As, Cd, Sb, Hg, and Pb in staple foodstuffs and agriproduct grown in Russia (Astrakhan region and the town of Belovo) and Egypt (Helwan region). The dependence of the concentration of metals in agriproducts on the content and chemical form of existence in irrigation water and soils is indicated.  相似文献   

10.
The annual water level regulating of the Three Gorges Reservoir prolonged the submerged duration (from 2 to 8 months) and resulted in the reversal of natural flood rhythms (winter submerged). These changes might alter plant community characteristics in the water level fluctuation zone (WLFZ). The aim of this study was to determine the plant community characteristics in the WLFZ and their responses to the environmental factors (i.e., annual hydrological regulation, topographic characteristics, soil physical properties and soil nutrients). The height, coverage, frequency and biomass of each plant species and the soil properties at each elevation zone (150, 155, 160, 165 and 170 m) were measured from March to September in 2010. Univariate two-factor analysis and redundancy analysis (RDA) were used to analyze the spatial and temporal variations of the community characteristics and identify the key environmental factors influencing vegetation. We found that 93.2 % of the species analysed were terrestrial vascular plants. Annual herbs made up the highest percentage of life forms at each altitude. The differences in the species number per square metre, the Shannon–Wiener diversity index and the biomass of vegetation demonstrated statistical significance with respect to sampling time but not elevation. The most dominant species at altitudes of 150, 155, 160, 165 and 170 m were Cynodon dactylon, Cyperus rotundus, Digitaria sanguinalis, Setaria viridis and Daucus carota, respectively. The concentrations of soil nutrients appeared to be the lowest at an altitude of 150 m, although the differences with respect to elevation were not significant. The results of the RDA indicated that the key factors that influenced the species composition of vegetation were elevation, slope, pH and the concentration of soil available phosphorus.  相似文献   

11.
The distribution and speciation of heavy metals in five agricultural soils of Piedmont Region (north-western Italy) were investigated. Ten metals, namely Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Ti and Zn were considered. Analytical determinations were performed by atomic emission or atomic absorption spectroscopy after microwave sample dissolution in acid solution. Total metal concentrations fit in the typical concentration ranges for unpolluted soils, with the exception of cadmium and lead content in some horizons. The effect of sampling depth on concentrations was discussed. Speciation studies were carried out by applying Tessier's procedure, which allows to subdivide the total metal content into five fractions, representing portions bound to different components of the soil. Moreover, the element labilities in two soils were evaluated by extraction with EDTA. Correlations among the variables and/or similarities among the sampling points were identified by principal component analysis and hierarchical cluster analysis.  相似文献   

12.
The Three Gorges Dam in China is the world’s largest dam. Upon its completion in 2003, the Three Gorges Reservoir (TGR) became the largest reservoir in China and plays an important role in economic development and national drinking water safety. However, as a sink and source of heavy metals, there is a lack of continuous and comparative data on heavy metal pollution in sediments. This study reviewed all available literatures published on heavy metals in TGR sediments and further provided a comprehensive assessment of the pollution tendency of these heavy metals. The results showed that heavy metal concentrations in TGR sediments varied spatially and temporally. Temporal variations indicated that Hg in tributaries, as well as As, Cd, Cr, Cu, Ni, Pb, and Zn in the mainstream, exhibited a higher probability to exceed background values after the impoundment of TGR. Pollution assessments by contamination factor, geoaccumulation index, and potential ecological risk were similar. High Cd and Hg concentrations in both the mainstream and tributaries are a cause for much concern. However, sediment quality guidelines produced different results, as most previous studies adopted different sampling and measurement strategies. The data inconsistencies and lack of continuity regarding the reservoir confirm the need for a continuous monitoring network and the development of quality criteria relevant to the sediments of the TGR in the future.  相似文献   

13.
Zhang H  Ni Y  Chen J  Su F  Lu X  Zhao L  Zhang Q  Zhang X 《Chemosphere》2008,73(10):1640-1648
Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) were analyzed in surface sediments and top soils collected from 30 sites in Daliao River Basin. The concentrations of PCDD/F ranged from 0.28 to 29.01 ng TEQ kg(-1) dw (mean value, 7.45 ng TEQ kg(-1)dw) in sediments, and from 0.31 to 53.05 ng TEQ kg(-1)dw (mean value, 7.00 ng TEQ kg(-1)dw) in soils. PCDD/F pollution in sediments from the mid- and downstream sections of Hun River was found to be relatively heavy, and the levels of PCDD/F contamination in paddy soils were generally higher than those of upland soils. Using multivariate statistical analysis, the PCDD/F homologue and congener profiles of all soil and sediment samples were compared with those of suspected PCDD/F sources. The results showed that, PCDD/F contamination in most sediments of Hun River should mainly originated from the production of organochlorine chemicals, while metal smelting was the important potential source of PCDD/F in the drainage area of Taizi River. PCDD/F contamination in paddy soils should be simultaneously attributed to the polluted water irrigation and the organochlorine pesticide application.  相似文献   

14.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

15.
Environmental Science and Pollution Research - Reservoir sediment contamination with heavy metals produced by mining activities has aroused widespread global concern owing to its potential threat...  相似文献   

16.
Zhang Q  Jiang G 《Chemosphere》2005,61(3):314-322
Sediments at 16 sites and muscles of four aquatic species collected in Taihu Lake were analyzed for polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) by HRGC/HRMS. The concentrations of total PCDD/Fs, PCBs and WHO-TEQ were 120.1-1315.1pg/gdw, 889.7-29747.8pg/gdw, and 0.83-17.72pgTEQ/gdw, respectively in sediments; and those in muscles were 5.49-35.84pg/gww, 1517.10-27647.98pg/gww, and 0.52-3.83pgTEQ/gww respectively. The concentrations of PCDD/Fs and PCBs in the sediments were decreasing gradually along the water flow. The pollution levels were compared with other studies and the possible sources were discussed.  相似文献   

17.
GOAL, SCOPE AND BACKGROUND: As one of the consequences of heavy metal pollution in soil, water and air, plants are contaminated by heavy metals in some parts of China. To understand the effects of heavy metals upon plants and the resistance mechanisms, would make it possible to use plants for cleaning and remediating heavy metal-polluted sites. METHODS: The research results on the effects of heavy metals on plants and resistant mechanisms are compiled from Chinese publications from scientific journals and university journals, mostly published during the last decade. RESULTS AND DISCUSSION: Effects of heavy metals on plants result in growth inhibition, structure damage, a decline of physiological and biochemical activities as well as of the function of plants. The effects and bioavailability of heavy metals depend on many factors, such as environmental conditions, pH, species of element, organic substances of the media and fertilization, plant species. But, there are also studies on plant resistance mechanisms to protect plants against the toxic effects of heavy metals such as combining heavy metals by proteins and expressing of detoxifying enzyme and nucleic acid, these mechanisms are integrated to protect the plants against injury by heavy metals. CONCLUSIONS: There are two aspects on the interaction of plants and heavy metals. On one hand, heavy metals show negative effects on plants. On the other hand, plants have their own resistance mechanisms against toxic effects and for detoxifying heavy metal pollution. RECOMMENDATIONS AND OUTLOOK: To study the effects of heavy metals on plants and mechanisms of resistance, one must select crop cultivars and/or plants for removing heavy metals from soil and water. More highly resistant plants can be selected especially for a remediation of the pollution site. The molecular mechanisms of resistance of plants to heavy metals should be studied further to develop the actual resistance of these plants to heavy metals. Understanding the bioavailability of heavy metals is advantageous for plant cultivation and phytoremediation. Decrease in the bioavailability to farmlands would reduce the accumulation of heavy metals in food. Alternatively, one could increase the bioavailability of plants to extract more heavy metals.  相似文献   

18.
Contamination by persistent organochlorines (OCs), such as DDTs, hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) were examined in sediments, soils, fishes, crustaceans, birds, and aquaculture feed from Lake Tai, Hangzhou Bay, and in the vicinity of Shanghai city in China during 2000 and 2001. OCs were detected in all samples analyzed, and DDT and its metabolites were the predominant contaminants in most sediments, soils and biota. Concentrations of p,p'-DDT and ratio of p,p'-DDT to SigmaDDTs were significantly higher in marine fishes than those in freshwater fishes. While the use of DDTs has been officially banned in China since 1983, these results indicate a recent input of technical DDTs into the marine environment around Hangzhou Bay. Comparison of organochlorine concentrations in fishes collected from Lake Tai and Hangzhou Bay suggests the presence of local sources of HCHs, chlordanes and PCBs at Lake Tai. Higher proportions of penta- and hexa-PCB congeners in fishes at Lake Tai may suggest the use of highly chlorinated PCB product, such as PCB(5), around this lake. To our knowledge, this is a first comprehensive study to examine the present status of organochlorine contamination in various environmental media, such as sediments, soils and wildlife, in China.  相似文献   

19.
A total of 224 agricultural soil samples from Huanghuai Plain in China were investigated for the concentrations of seven heavy metals (As, Cd, Cr, Hg, Ni, Pb, and Zn). The mean concentrations of the metals were 12, 0.17, 79, 0.04, 35, 25, and 74 mg/kg, respectively. These values are similar or slightly higher than background values in this region, except for Cd with a mean nearly twice the background value. The estimated ecological risks based on contamination factors and potential ecological risk indexes are also mostly low, but considerable for Cd and Hg. Multivariate analysis (including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) clearly revealed three distinct metal groups, i.e., Cr/Ni/Zn, As/Cd/Pb, and Hg, whose concentrations were closely associated with the distribution and pollution characteristics of industries in and around the plain. The main anthropogenic sources for the three metal groups were identified as atmospheric deposition, sewage irrigation/fertilizers usage, and atmospheric deposition/irrigation water, respectively. The present results are well suited for planning, risk assessment, and decision making by environmental managers of this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号