共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - A high-performance sorbent, modified water treatment residuals–sodium alginate beads (WTR-SA beads), was prepared through a series of salt and... 相似文献
2.
Environmental Science and Pollution Research - Several industries release varying concentration of dye-laden effluent with substantial negative consequences for any receiving environmental... 相似文献
4.
A batch adsorption process was applied to investigate the removal of perchlorate (ClO 4 ?) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO 4 ? removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO 4 ?. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable. 相似文献
5.
The extensive use of Bisphenol A (BPA) in the plastics industry has led to increasing reports of its presence in the aquatic environment, with concentrations of ng L ?1 to μg L ?1. Various advanced oxidation processes, including ozonation, have been shown to effectively degrade BPA. This paper reviews the current advancements in using ozone to remove BPA from water and wastewater.Most of the published work on the oxidation of BPA by ozone has focused on the efficiency of BPA removal in terms of the disappearance of BPA, and the effect of various operational parameters such as ozone feed rate, contact time and pH; some information is available on the estrogenic activity of the treated water. Due to increasing operational reliability and cost effectiveness, there is great potential for industrial scale application of ozone for the treatment of BPA. However, there is a significant lack of information on the formation of oxidation by-products and their toxicities, particularly in more complex matrices such as wastewater, and further investigation is needed for a better understanding of the environmental fate of BPA. 相似文献
6.
The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61–91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal. 相似文献
7.
Water scarcity is being recognized as a present and future threat to human activity and as a consequence water purification technologies are gaining major attention worldwide. Nanotechnology has many successful applications in different fields but recently its application for water and wastewater treatment has emerged as a fast-developing, promising area. This review highlights the recent advances on the development of nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater that are contaminated by toxic metals, organic and inorganic compounds, bacteria and viruses. In addition, the toxic potential of engineered nanomaterials for human health and the environment will also be discussed. 相似文献
8.
A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage. 相似文献
9.
Environmental Science and Pollution Research - Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify... 相似文献
10.
Abstract This paper reports on the adsorption of different organic pesticides by hydrotalcite, hydrotalcite heated to 500°C and organo‐hydrotalcite in aqueous medium by employing adsorption isotherms, and using X‐ray diffraction and infrared spectroscopy techniques. The results suggest that the adsorption capacity of the different materials depends on their nature as well as on the structure, polarity and hydrophobic or anionic nature of the pesticides. The results also show that hydrotalcite, both natural and after calcination at 500°C, is not a good sorbent of hydrophobic pesticides. The data demonstrated that both types of hydrotalcite, however, are very good sorbents of glyphosphate. Furthermore, the organo‐hydrotalcites may be as good sorbents as organo‐montmorillonites for hydrophobic pesticides. 相似文献
11.
The anoxic–oxic (A/O) process has been extensively applied for simultaneous removal of organic contaminants and nitrogen in wastewater treatment. However, very little is known about its ability to remove toxic materials. Municipal wastewater contains various kinds of pollutants, some of which have recalcitrant genotoxicity and may cause potential threat to environment, and even can lead to extinction of many species. In this study, we have selected three municipal wastewater treatment plants (WWTPs) employing anoxic–oxic (A/O) process to evaluate their ability to remove acute toxicity and genotoxicity of wastewater. Mortality rate of zebrafish ( Danio rerio) was used to evaluate acute toxicity, while micronucleus (MN) and comet assays were used to detect genotoxicity. Results showed that in this process the acute toxicity was completely removed as the treatment proceeded along with decrease in chemical oxygen demand (COD) (<50 mg L ?1) in the effluent. However, in these treatment processes the genotoxicity was not significantly reduced, but an increase in genotoxicity was observed. Both MN and comet assays showed similar results. The eliminated effluent may pose genotoxic threaten although its COD level has met the Chinese Sewage Discharge Standard. This study suggests that further treatment of the wastewater is required after the A/O process to remove the genotoxicity and minimize the ecotoxicological risk. 相似文献
12.
The increasing role of chemistry in industrial production and its direct and indirect impacts in everyday life create the need for continuous search and efficiency improvement of new methods for decomposition/removal of different classes of waterborne anthropogenic pollutants. This review paper addresses a highly promising class of water treatment solutions, aimed at tackling the pressing problem of emerging contaminants in natural and drinking waters and wastewater discharges. Radiation processing, a technology originating from radiation chemistry studies, has shown encouraging results in the treatment of (mainly) organic water pollution. Radiation (“high energy”) processing is an additive-free technology using short-lived reactive species formed by the radiolysis of water, both oxidative and reducing, to carry out decomposition of organic pollutants. The paper illustrates the basic principles of radiolytic treatment of organic pollutants in water and wastewaters and specifically of one of its most practical implementations (electron beam processing). Application examples, highlighting the technology’s strong points and operational conditions are described, and a discussion on the possible future of this technology follows. 相似文献
13.
Industrial wastewater is the largest contributor of toxic pollutants and third-largest contributor of nutrients to bodies of water in China, and understanding the characteristics of such pollution is important for water pollution control. In this study, the industrial gray water footprint (GWF) of each industry sector in China’s 31 provinces in 2015 was calculated to identify the pollution characteristics of industrial wastewater discharge and determine how to efficiently allocate investment to pollution reduction. We show that the total industrial GWF of China was 300 billion m3 in 2015 and that the major pollutants were petroleum pollutant (PP), ammonia nitrogen (NH3-N), volatile phenol (VP), and chemical oxygen demand (COD). The water pollution level (WPL) was higher than 1 in Ningxia, Shanxi, Hebei, Tianjin, Shanghai, Henan, and Shandong, indicating that industrial pollution exceeded the carrying capacity of local water bodies in these seven regions. Given equivalent total investment, a scenario that takes the total reduction of the industrial GWF weighted by the WPL in each region as the investment target can better allocate funds to control industrial wastewater pollution in regions with high WPLs relative to a scenario in which investment targets the reduction of the unweighted total industrial GWF. For further industrial GWF reduction in regions with high WPLs, it is crucial to adjust the industrial structure and to upgrade relevant technologies. 相似文献
14.
Environmental Science and Pollution Research - Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to... 相似文献
15.
Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines. 相似文献
16.
Background, aim, and scope We strive to predict consequences of genetically modified plants (GMPs) being cultivated openly in the environment, as human and animal health, biodiversity, agricultural practise and farmers’ economy could be affected. Therefore, it is unfortunate that the risk assessment of GMPs is burdened by uncertainty. One of the reasons for the uncertainty is that the GMPs are interacting with the ecosystems at the release site thereby creating variability. This variability, e.g. in gene flow, makes consequence analysis difficult. The review illustrates the great uncertainty of results from gene-flow analysis. Main features Many independent experiments were performed on the individual processes in gene flow. The results comprise information both from laboratory, growth chambers and field trials, and they were generated using molecular or phenotypic markers and analysis of fitness parameters. Monitoring of the extent of spontaneous introgression in natural populations was also performed. Modelling was used as an additional tool to identify key parameters in gene flow. Results The GM plant may affect the environment directly or indirectly by dispersal of the transgene. Magnitude of the transgene dispersal will depend on the GM crop, the agricultural practise and the environment of the release site. From case-to-case these three factors provide a variability that is reflected in widely different likelihoods of transgene dispersal and fitness of introgressed plants. In the present review, this is illustrated through a bunch of examples mostly from our own research on oilseed rape, Brassica napus. In the Brassica cases, the variability affected all five main steps in the process of gene dispersal. The modelling performed suggests that in Brassica, differences in fitness among plant genome classes could be a dominant factor in the establishment and survival of introgressed populations. Discussion Up to now, experimental analyses have mainly focused on studying the many individual processes of gene flow. This can be criticised, as these experiments are normally carried out in widely different environments and with different genotypes, and thus providing bits and pieces difficult to assemble. Only few gene-flow studies have been performed in natural populations and over several plant generations, though this could give a more coherent and holistic view. Conclusion The variability inherent in the processes of gene flow in Brassica is apparent and remedies are wished for. One possibility is to expose the study species to additional experiments and monitoring, but this is costly and will likely not cover all possible scenarios. Another remedy is modelling gene flow. Modelling is a valuable tool in identifying key factors in the gene-flow process for which more knowledge is needed, and identifying parameters and processes which are relatively insensitive to change and therefore require less attention in future collections of data. But the interdependence between models and experimental data is extensive, as models depend on experimental data for their development or testing. Recommendations More and more transgenic varieties are being grown worldwide harbouring genes that might potentially affect the environment (e.g. drought tolerance, salt tolerance, disease tolerance, pharmaceutical genes). This calls for a thorough risk assessment. However, in Brassica, the limited and uncertain knowledge on gene flow is an obstacle to this. Modelling of gene flow should be optimised, and modelling outputs verified in targeted field studies and at the landscape level. Last but not least, it is important to remember that transgene flow in itself is not necessarily a thread, but it is the consequences of gene flow that may jeopardise the ecosystems and the agricultural production. This emphasises the importance of consequence analysis of genetically modified plants. 相似文献
17.
A steady state, three-dimensional solution of the atmospheric diffusion equation including settling, deposition, and first-order removal is presented. The solution is applied to the prediction of airborne concentrations of gaseous and particulate pollutants in the case in which gases are converted to secondary particulate matter. The conversion of sulfur dioxide, nitrogen oxides, and hydrocarbons to particulate sulfate, nitrate, and organics in the Los Angeles atmosphere and urban plume is analysed. 相似文献
18.
A combined transport/chemistry model which simulates the regional distribution of SO 2 and sulfate within the lower troposphere is described. The mathematical analysis is based on the coupled three-dimensional advection-diffusion equations for SO 2 and sulfate, and incorporates chemical transformations as well as the physical phenomena of dry deposition at the surface. The analysis also considers spatial variations in topography and spatial and temporal variations in both the mixing layer heights and the wind field. Based on the results from a series of numerical experiments, the dynamic model employs a Galerkin method for the numerical solution of the partial differential equations.A SO 2 photochemical oxidation mechanism is incorporated into the transport model. The SO 2 photochemical oxidation rate is based on a set of 27 reactions used to estimate the hydroxyl and peroxyl radical concentrations. The kinetic mechanism has been tested in simulations of smog chamber studies and yields realistic concentrations and conversion rates in model simulations of both urban and natural tropospheres.Other major facets treated in the formulation of the model include the interpretation and use of data available on dry deposition and the development of procedures to calculate meteorological model inputs (e.g., eddy diffusivities, dry deposition velocities, the three components of wind velocity, etc.) from routinely measured meteorological data. Simulations using the analysis are presented in a companion paper. 相似文献
19.
Environmental Science and Pollution Research - The persistence of many micropollutants in water and wastewater is of great concern to the contemporary scientific community. Several types of... 相似文献
20.
Environmental Science and Pollution Research - Environmental arsenic exposure in adults and children has been associated with a reduction in the expression of club cell secretory protein (CC16) and... 相似文献
|