首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Ethanol–gasoline-blended fuel was tested in a conventional engine under various air–fuel equivalence ratios (λ) for its performance and emissions. The amount of fuel injection was adjusted manually by an open-loop control system using a CONSULT controller. It was found that without changing throttle opening and injection strategy, λ could be extended to a leaner condition as ethanol content increased. The results of engine performance tests showed that torque output would increase slightly at small throttle valve opening when ethanol–gasoline-blended fuel was used. It was also shown that CO and HC emissions were reduced with the increase of ethanol content in the blended fuel, which resulted from oxygen enrichment. At an air–fuel equivalence ratio slightly larger than one, the smallest amounts of CO and HC and the largest amounts of CO2 resulted. It was noted that under the lean combustion condition, CO2 emission was controlled by air–fuel equivalence ratio; while under the rich combustion condition, CO2 emission is offset by CO emission. It was also found that CO2 emission per unit horse power output for blended fuel was similar or less than that for gasoline fuel. From the experimental data, the optimal ethanol content in the gasoline and air–fuel equivalence ratio in terms of engine performance and air pollution was found.  相似文献   

2.
Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L?1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L?1 and after 27 h to 5 mg L?1 CuO NPs. As a result, 4-h treatment with 5 mg L?1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L?1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L?1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the “Threshold for Tolerance Model” with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.  相似文献   

3.
Polychlorinated diphenyl ether (PCDE) has attracted great attention recently as an important type of environmental pollutant. The influence of iron and copper oxides on formation of PCDEs was investigated using laboratory-scale flow reactors under air and under nitrogen at 350 °C, a temperature corresponding to the post-combustion zone of a municipal solid waste incinerator. The results show that the 2,2′,3,4,4′,5,5′,6-otachlorodiphenyl ether (OCDE) formed from the condensation of pentachlorophenol (PCP) and 1,2,4,5-tetrachlorobenzene (Cl4Bz) is the predominant congener formed on the SiO2/Fe2O3 surface with and without oxygen. This indicated that HCl elimination between PCP and 1,2,4,5-Cl4Bz molecules formed 2,2′,3,4,4′,5,5′,6-OCDE in the presence of Fe2O3. On the other hand, decachlorodiphenyl ether, nonachlorodiphenyl ether, and OCDE were the dominant products on the SiO2/CuO surface without oxygen, although the 2,2′,3,4,4′,5,5′,6-OCDE was the dominant product on the SiO2/CuO surface with oxygen. Therefore, the presence of Fe2O3 and CuO influences the formation and homologue distribution of PCDEs, which shifted towards the lower chlorinated species. Fe2O3 can promote both the condensation and dechlorination reaction without oxygen. On the contrary, with oxygen, Fe2O3 suppresses the condensation of chlorobenzene and chlorophenol to form PCDEs and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). CuO can increase the formation of lower chlorinated PCDEs and PCDDs without oxygen. In conclusion, the different fly ash components have a major influence on PCDE emissions.  相似文献   

4.
This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.  相似文献   

5.
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m2/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.  相似文献   

6.
The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10–25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO2) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines.
Graphical abstract ?
  相似文献   

7.
The nitrogen oxides (NOx) reduction technology by combustion modification which has economic benefits as a method of controlling NOx emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NOx reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NOx in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N2), carbon dioxide (CO2) and steam (H2O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NOx concentration greatly. Implications: We investigated the influence of factors determining the nitrogen oxides (NOx) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NOx emissions the most.  相似文献   

8.
This paper summarizes the results of research conducted at Ar-gonne National Laboratory (ANL) to develop and design a novel method for the recovery of CO2 from flue gases. The basic process concept Involves the combustion of a hydrocarbon fuel using a mixture of oxygen and carbon dioxide (or CO2 and H20) rather than air as the oxidant, which results In a product stream that contains primarily CO2 and H2O. This stream Is then dried and conditioned to meet the specifications of the end user, A slip stream of CO2 (or CO2, and H20) is used as a diluent in the combustion chamberto maintain a flame temperature equivalent to the temperature that would otherwise be obtained using air as an oxidant. The cost-effectiveness of the process in recovering C02 is dependent on the scale of the operation, the type of fuel used, the cost of oxygen, and the cost of capital. The sensitivity of the cost of the recovered C02 to these variables Is discussed, and a model for estimating the cost of CO2 recovered using the ANL process Is presented.  相似文献   

9.
Bengt Ahling 《Chemosphere》1977,6(7):437-442
A plant for combustion on a pilot scale is described.The plant is comprised of two shaft furnaces connected to a common afterburning chamber. Sawmill chips and LP-gas are used as supporting fuel. The plant is provided with equipment for continuous feeding-in of both solid and liquid wastes.The products of decomposition and residual concentrations resulting from combustion of the wastes are analysed with respect to different organic compounds. These analyses are made on ingoing product, slag, dust and fuel gases. In addition, temperature, transit time, gas composition (CO, CO2, O2), fuelgas flow and - in some cases - parameters such as total hydrocarbon and nitrogen oxides are investigated.  相似文献   

10.
Abstract

Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted [~20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted ~35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idleCO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased by ~100% and 70%, respectively. Six Detroit Diesel Corp. (DDC) Series 60 engines in engine test cell were found to emit less CO, NOx, and PM emissions and consumed fuel at only 75%of the level found in the chassis dynamometer data. This is because fan and compressor loads were absent in the engine test cell.  相似文献   

11.
A simple technology for phosphate (P i ) recovery has been developed using a bifunctional adsorption–aggregation agent. The bifunctional agent was prepared by soaking calcium silicates in hydrochloric acid solution. Importantly, recyclable calcium silicates were available almost free of charge from the cement industry and also from the steel industry. The acid treatment was essential not only for enhancing the ability of calcium silicates to remove P i from aqueous solution but also for enabling the high settleability of removed P i . On-site experiments using a mobile plant showed that approximately 80% P i could be recovered from anaerobic sludge digestion liquor at a wastewater treatment plant. This technology has the potential to offer a simple, compact service for recycling P i from wastewater to farmland in rural areas.  相似文献   

12.
Dissolved organic nitrogen (DON) is an important component of aquatic environment of which amount impacts water quality. Thus, removal of DON has attracted wide attention. At present, it is difficult for common coagulation to remove DON from the aquatic environment. The cationic polymers can help to improve the removal efficiency of DON to some extent, but the underlying mechanism of the ascension is not clear. In order to grasp its removal behavior and further improve the removal efficiency of DON in the future, we evaluated the effect of a hybridized coagulant of polyacrylamide with iron-based coagulant on removal of aquatic DON. A higher floc growth rate (119.82 μm/min) and recovery factors (26.96) were found in the hybrid coagulation. The parameters affecting the DON and the dissolved organic carbon (DOC) included the molar ratio of Zn to Fe (nZn/nFe), CPAM content, and molar ratio of OH to Fe (nOH/nFe): nZn/nFe had a larger influence in DON removal than CPAM content; CPAM had a larger influence in the DOC removal; nOH/nFe played a moderate effect between CPAM and nZn/nFe. Mutual effect of hybrid coagulants indicated the colloidal species to be helpful in enhancing DOC and DON removal. Other parameters affecting coagulation performance included the pH: the estimated maximum DON removal efficiency occurred at pH 6, DOC removal efficiency at pH 8. The above results found in this study showed that DON removal was affected by the ingredient and the species composition of the hybrid coagulant, and the water environmental parameter. The enhanced efficiency of DON removal in the presence of CPAM was mainly attributed to the increased adsorption-bridging and sweep-floc.  相似文献   

13.
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (~10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.  相似文献   

14.
The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85–98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2), total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5?×?1015 to 5?×?1015 particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of ~90% for SO2 and particle mass EIs and ~60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of ~5 as compared with JP-8.

Implications: The results of this research show that APUs can be, depending on the level of fuel usage, an important source of air pollutant emissions at major airports in urban areas. Substantial decreases in emissions can also be achieved through the use of Fischer Tropsch (FT) fuel. Based on these results, the use of FT fuel could be a viable future control strategy for both gas- and particle-phase air pollutants.  相似文献   

15.
Considerable researches have documented the negative effects of ozone on woody species in North America and Europe; however, little is known about how woody tree species respond to elevated O3 in subtropical China, and most of the previous studies were conducted using pot experiment. In the present study, Machilus ichangensis Rehd. et Wils (M. ichangensis) and Taxus chinensis (Pilger) Rehd. (T. chinensis), evergreen tree species in subtropical China, were exposed to non-filtered air (NF), 100 nmol mol?1 O3 (E1) and 150 nmol mol?1 O3 (E2), in open-top chambers under field conditions from 21st March to 2nd November 2015. In this study, O3 fumigation significantly reduced net photosynthesis rate (Pn) in M. ichangensis in the three measurements and in T. chinensis in the last measurement. Also, non-stomatal factors should be primarily responsible for the decreased Pn. O3 fumigation-induced increase in malondialdehyde, superoxide dismutase, and reduced ascorbic acid levels indicated that antioxidant defense mechanism had been stimulated to prevent O3 stress and repair the oxidative damage. Yet, the increase of antioxidant ability was not enough to counteract the harm of O3 fumigation. Because of the decrease in CO2 assimilation, the growth of the two tree species was restrained ultimately. The sensitivity of the two tree species to O3 can be determined: M. ichangensis > T. chinensis. It suggests a close link between the rising O3 concentrations and the health risk of some tree species in subtropics in the near future.  相似文献   

16.
The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).  相似文献   

17.
Vanadium compounds are toxic pollutants which require engineering control in the design stage. In the lower Delaware River Valley, the main sources are presently the combustion of vanadium rich fuel oils and the catalytic processing of high vanadium crudes. These and other Industrial emissions, result in atmospheric vanadium concentrations which have varied from 0.133 μg/m3 to 0.557 μg/m3 between 1958 and 1969. Compounds of vanadium, principally with oxygen and sulfur, are considered. The dominance of oxygen compounds over sulfur compounds as derived from equilibrium data, and the tendency of vanadium oxides to move toward vanadium’s maximum valence of +5, indicate the prevalence of V205 as the emission compound.  相似文献   

18.
The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV–visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7?×?104 CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.  相似文献   

19.
The body of Information presented in this paper is directed to those Individuals concerned with the removal of NOx in combustion flue gases. A catalytic process for the selective reduction of nitrogen oxides by ammonia has been investigated. Efforts were made toward the development of catalysts resistant to SOx poisoning. Nitrogen oxides were reduced over various metal oxide catalysts in the presence or absence of SOx(SO2 and SO3). Catalysts consisting of oxides of base metals (for example, Fe2O3) were easily poisoned by SO3, forming sulfates of the base metals. A series of catalysts which are not susceptible to the SOx poisoning has been developed. The catalysts possess a high activity and selectivity over a wide range of temperatures, 250—450°C. The catalysts were tested in a pilot plant which treated a flue gas containing 110-150 ppm NOx, 660-750 ppm SO2, and 40-90 ppm SO3. The pilot plant was operated at 350°C and at a space velocity of 10,000 h-1. The removal of nitrogen oxides was more than 90% for several months.

A mechanism of the NO-NH3 reaction has also been investigated. It is found that NO reacts with NH3 at a 1:1 mole ratio in the presence of oxygen and the reaction is completely inhibited by the absence of oxygen. The experimental data show that the NO-NH3 reaction in the presence of oxygen is represented byNO + NH3 + 1/4 O2 = N2 + 3/2 H2O.  相似文献   

20.
Oxyfuel combustion is a promising technology that may greatly facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants (e.g., acid gases, particulates, metals and organics) is not well studied. It is possible that combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry (e.g., by changing the valence state of metals). The data available for addressing these concerns are quite limited and are typically derived from laboratory-scale or pilot-scale tests. A review of the available data does suggest that oxyfuel combustion may decrease the air emissions of some pollutants (e.g., SO2, NOx, particulates) whereas data for other pollutants are too limited to draw any conclusions. The oxy-combustion systems that have been proposed to date do not have a conventional “stack” and combustion flue gas is treated in such a way that solid or liquid waste streams are the major outputs. Use of this technology will therefore shift emissions from air to solid or liquid waste streams, but the risk management implications of this potential change have yet to be assessed. Truly useful studies of the potential effects of oxyfuel combustion on power plant emissions will require construction of integrated systems containing a combustion system coupled to a CO2 processing unit. Sampling and analysis to assess potential emission effects should be an essential part of integrated system tests.

Implications: Oxyfuel combustion may facilitate carbon capture and sequestration by increasing the relative CO2 content of the combustion emission stream. However, the potential effect of enhanced oxygen combustion conditions on emissions of criteria and hazardous air pollutants has not been well studied. Combustion under oxyfuel conditions could produce emissions posing different risks than those currently being managed by the power industry. Therefore, before moving further with oxyfuel combustion as a new technology, it is appropriate to summarize the current understanding of potential emissions risk and to identify data gaps as priorities for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号