首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modern epidemiology has shown that fluctuations of mortality data are statistically significantly correlated with fluctuations of ambient particulate matter (PM) concentration data. This relation cannot be confounded by exposure to PM of indoor origin because the concentrations of ambient PM are not correlated with concentrations of PM of indoor origin. It has been suggested, given the above understanding, that modern PM exposure measurements and analysis should create separate estimates of exposure to all PM of ambient origin and exposure to all PM of nonambient origin (primarily of indoor origin), and not exposure to total PM. This paper reviews the developments of the form of the general microenvironmental mass balance equation that can be utilized for estimating human exposure to PM of ambient origin and for estimating the portion of total PM exposure that is attributable to nonambient origin PM. The equation is perfectly general and can be applied to conditions of time-varying factors that influence exposure, such as rapidly changing air-exchange rates in a home as doors and windows are opened and closed, and turning on and off air cleaners in a home. It is suggested that this procedure be applied in exposure assessment studies and validated using independent techniques of estimating exposure to PM of ambient origin available in the literature.  相似文献   

2.
A numerical particulate matter (PM) measurement model is developed to characterize and evaluate PM sampling methods. Simulations are conducted using the model to evaluate currently widely used PM samplers, including Federal Reference Method (FRM) samplers. The simulations show that current PM samplers are very vulnerable to both changes in measurement target (i.e., natural variability of particle size distribution) and the sampler's design, manufacturing, and operating conditions, potentially resulting in significant errors in the monitoring data. The numerical model is used in conjunction with two types of commercially available PM monitoring devices to form a Comprehensive Particulate Matter Monitoring System (CPMMS). The first type of device can be any mass-based PM monitor with a well-defined sampling efficiency curve. The second type of device is one capable of measuring particle size distribution with a reasonably good relative accuracy between size categories but not necessarily accurate in measuring absolute mass concentrations. This study shows that CPMMS can produce much higher quality PM monitoring data than the current PM samplers under the same conditions. In addition, unlike past and current PM monitoring data such as total suspended particulates, coarse PM (PM10), fine PM (PM2.5), etc., the CPMMS monitoring data will survive changes in PM regulatory definition. A new concept, dosimetry-based PM metrics and standards, is proposed to define ambient PM level based on the deposition fraction of particles in the human respiratory tract. The dosimetry-based PM metrics is more meaningful because it correlates the ambient PM level with the portion that can be deposited in the respiratory tract without an arbitrary cutoff particle diameter. CPMMS makes dosimetry-based PM metrics and standards feasible.  相似文献   

3.
Monitoring of particulate matter outdoors   总被引:6,自引:0,他引:6  
  相似文献   

4.
Modeling exposure to particulate matter   总被引:2,自引:0,他引:2  
Exposure assessment, a component of risk assessment, links sources of pollution with health effects. Exposure models are scientific tools used to gain insights into the processes affecting exposure assessment. The purpose of this paper is to review the process and methodology of estimating inhalation exposure to particulate matter (PM) using various types of models. Three types of models are discussed in the paper. Indirect type of models are physical models that employ inventories of outdoor and indoor sources and their emission rates to identify major sources contributing to exposure to PM, and use fate and transport and indoor air quality models to estimate PM concentrations at receptor sites. PM concentrations and time spent by a subject at each receptor site are input variables to the conventional exposure model that estimates the desired exposure levels. Direct type models use measured exposure or exposure concentrations in conjunction with information obtained from questionnaires to formulate exposure regression models. Stochastic models use exposure measurements, estimates can also be used, to formulate exposure population distributions and investigate associated uncertainty and variability. Since models developed using databases from western countries are not necessarily applicable in developing countries, the difference in requirements among western and developing countries is highlighted in the paper. Employment of exposure modeling methods in developing countries requires development of local information. Such information includes local outdoor and indoor source inventories, local or regional meteorological conditions, adjustment of indoor models to reflect local building construction conditions, and use of questionnaires to obtain local time budget and activity patterns of the subject population.  相似文献   

5.
The aims of this study were to determine the particulate matter with aerodynamic diameters > or = 2.5 microm (PM2.5) and 2.5-10 microm (PM10-2.5) exposure levels of drivers and to analyze the proportion of elemental carbon (EC) and organic carbon (OC) in PM2.5 in Bangkok, Thailand. Four bus routes were selected. Measurements were conducted over 10 days in August (rainy season) 2008 and 8 days in January (dry season) 2009. The mean PM2.5 exposure level of the Tuk-tuk drivers was 86 microg/m3 in August and 198 microg/m3 in January. The mean for the non-air-conditioned bus drivers was 63 microg/m3 in August and 125 microg/m3 in January. The PM2.5 and PM10-2.5 exposure levels of the drivers in January were approximately twice as high as those in August. The proportion of total carbon (TC) in PM2.5 to the PM2.5 level in August (0.97 +/- 0.28 microg/m3) was higher than in January (0.65 +/- 0.13 microg/m3). The proportion of OC in the TC of the PM2.5 in August (0.51 +/- 0.08 microg/m3) was similar to that in January (0.65 +/- 0.07 microg/m3). The TC exposure by PM25 in January (81 +/- 30 microg/m3) remained higher than in August (56-21 microg/m3). The mean level of OC in the PM2.5 was 29 +/- 13 microg/m3 in August and 50 +/- 24 microg/m3 in January. In conclusion, the PM exposure level in Bangkok drivers was higher than that in the general environment, which was already high, and it varied with the seasons and vehicle type. This study also demonstrated that the major component of the PM was carbon, likely derived from vehicles.  相似文献   

6.
Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land.  相似文献   

7.
A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.  相似文献   

8.
Environmental Science and Pollution Research - Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is...  相似文献   

9.
A wintertime episode during the 2000 California Regional PM Air Quality Study (CRPAQS) was simulated with the air quality model CMAQ–MADRID. Model performance was evaluated with 24-h average measurements available from CRPAQS. Modeled organic matter (OM) was dominated by emissions, which were probably significantly under-represented, especially in urban areas. In one urban area, modeled daytime nitrate concentrations were low and evening concentrations were high. This diurnal profile was not explained by the partition of nitrate between the gas and particle phases, because gaseous nitric acid concentrations were low compared to PM nitrate. Both measured and simulated nitrate concentrations aloft were lower than at the surface at two tower locations during this episode. Heterogeneous reactions involving NO3 and N2O5 accounted for significant nitrate production in the model, resulting in a nighttime peak. The sensitivity of PM nitrate to precursor emissions varied with time and space. Nitrate formation was on average sensitive to NOx emissions. However, for some periods at urban locations, reductions in NOx caused the contrary response of nitrate increases. Nitrate was only weakly sensitive to reductions in anthropogenic VOC emissions. Nitrate formation tended to be insensitive to the availability of ammonia at locations with high nitrate, although the spatial extent of the nitrate plume was reduced when ammonia was reduced. Reductions in PM emissions caused OM to decrease, but had no effect on nitrate despite the role of heterogeneous reactions. A control strategy that focuses on NOx and PM emissions would be effective on average, but reductions in VOC and NH3 emissions would also be beneficial for certain times and locations.  相似文献   

10.
Ishii S  Hisamatsu Y  Inazu K  Aika K 《Chemosphere》2001,44(4):681-690
1- and 2-Nitrotriphenylenes were found in the airborne particulate matter extracts collected in central Tokyo between the winter of 1998 and the winter of 1999. In particular, we have identified and quantified nitrotriphenylenes in the airborne particulate matter extracts collected over four consecutive 6-h periods on 2 December 1999. The concentrations of 1- and 2-nitrotriphenylene ranged from 0.04 to 0.44 and from 0.02 to 0.47 ng/m3, respectively, and the concentrations in the airborne particulate matter extracts collected during the 18:00-24:00 h time period were the highest of the four collection periods. 1-Nitropyrene and 2-nitrofluoranthene were also identified and quantified in the four 6-h samples. Although the concentrations of 1- and 2-nitrotriphenylenes were not higher than that of 2-nitrofluoranthene except during the 18:00-24:00 h time period, the concentrations were much higher than that of 1-nitropyrene during the four collection periods.The higher concentrations of 1- and 2-nitrotriphenylenes during the 18:00-24:00 h time period are presumably responsible for the high reactivity of parent triphenylene with NO2/NO3/N2O5, and high stability of 1- and 2-nitrotriphenylenes toward O3 + O2. In addition, the observed isomer distribution of nitrotriphenylenes suggested that direct emission of nitrotriphenylenes is also a source as well as their atmospheric formation.  相似文献   

11.
The National Air Surveillance Network (NASN) has collected samples of suspended particulate matter since 1957. These data values are graphically summarized by the application of Whittaker-Henderson Type A curve-smoothing formulas to 10 years of data. Fifty-eight urban sites and 20 nonurban sites are studied by this technique, which permits an intuitive grasp of the underlying cyclical patterns as well as long-term trends in nationwide levels of suspended particulate matter. Seasonal patterns are evident for many urban and nonurban sites, although sharp contrasts in seasonal characteristics exist between the two types of sites. Long-term levels tend slightly downward at many urban locations, but the opposite effect is observed at many nonurban sites.  相似文献   

12.
Characterization of particulate matter for three sites in Kuwait   总被引:1,自引:0,他引:1  
Many studies have shown strong associations between particulate matter (PM) levels and a variety of health outcomes, leading to changes in air quality standards in many regions, especially the United States and Europe. Kuwait, a desert country located on the Persian Gulf, has a large petroleum industry with associated industrial and urban land uses. It was marked by environmental destruction from the 1990 Iraqi invasion and subsequent oil fires. A detailed particle characterization study was conducted over 12 months in 2004-2005 at three sites simultaneously with an additional 6 months at one of the sites. Two sites were in urban areas (central and southern) and one in a remote desert location (northern). This paper reports the concentrations of particles less than 10 microm in diameter (PM10) and fine PM (PM2.5), as well as fine particle nitrate, sulfate, elemental carbon (EC), organic carbon (OC), and elements measured at the three sites. Mean annual concentrations for PM10 ranged from 66 to 93 microg/m3 across the three sites, exceeding the World Health Organization (WHO) air quality guidelines for PM10 of 20 microg/m3. The arithmetic mean PM2.5 concentrations varied from 38 and 37 microg/m3 at the central and southern sites, respectively, to 31 microg/m3 at the northern site. All sites had mean PM2.5 concentrations more than double the U.S. National Ambient Air Quality Standard (NAAQS) for PM2.5. Coarse particles comprised 50-60% of PM10. The high levels of PM10 and large fraction of coarse particles comprising PM10 are partially explained by the resuspension of dust and soil from the desert crust. However, EC, OC, and most of the elements were significantly higher at the urbanized sites, compared with the more remote northern site, indicating significant pollutant contributions from local mobile and stationary sources. The particulate levels in this study are high enough to generate substantial health impacts and present opportunities for improving public health by reducing airborne PM.  相似文献   

13.
The particle size distributions (PSDs) of particulate matter (PM) in the downwind plume from simulated sources of a cotton gin were analyzed to determine the impact of PM settling on PM monitoring. The PSD of PM in a plume varies as a function of gravitational settling. Gravitational settling has a greater impact on the downwind PSD from sources with PSDs having larger mass median diameters (MMDs). The change in PSD is a function of the source PSD of emitted PM, wind speed, and downwind distance. Both MMD and geometric standard deviation (GSD) in the downwind plume decrease with an increase in downwind distance and source MMD. The larger the source MMD, the greater the change in the downwind MMD and GSD. Also, the greater the distance from the source to the sampler, the greater the change in the downwind MMD and GSD. Variations of the PSD in the downwind plume significantly impact PM10 sampling errors associated with the U.S. Environmental Protection Agency (EPA) PM10 samplers. For the emission sources with MMD > 10 microm, the PM10 oversampling rate increases with an increase in downwind distance caused by the decrease of GSD of the PSD in the downwind plume. Gravitational settling of particles does not help reduce the oversampling problems associated with the EPA PM10 sampler. Furthermore, oversampling rates decrease with an increase of the wind speed.  相似文献   

14.
Ambient air monitoring for organic acids in PM2.5 was conducted at several locations in California. During the study, it was found that oxalic acid (ethanedioc acid) was the most abundant organic acid found in the PM2.5 fraction. Samples from Azuza (in southern California), San Jose (in the San Francisco Bay area), and Fresno (in central California), a PM2.5 Super Site, were collected in 1999 and analyzed. The results for oxalic acid concentrations during this monitoring effort are presented.  相似文献   

15.
In-stack condensible particulate matter measurements and issues   总被引:5,自引:0,他引:5  
Particulate matter (PM) emitted from fossil fuel-fired units can be classified as either filterable or condensible PM. Condensible PM typically is not measured because federal and most state regulations do not require sources to do so. To determine the magnitude of condensible PM emissions relative to filterable PM emissions and to better understand condensible PM measurement issues, a review and analysis of actual U.S. Environmental Protection Agency (EPA) Method 202 (for in-stack condensible PM10) and EPA Method 201/201A (for in-stack filterable PM10) results were conducted. Methods 202 and 201/201A results for several coal-burning boilers showed that the condensible PM, on average, comprises approximately three-fourths (76%) of the total PM10 stack emissions. Methods 202 and 201/201A results for oil- and natural gas-fired boilers showed that the condensible PM, on average, comprises 50% of the total PM10 stack emissions. Methods 202 and 201/201A results for oil-, natural gas-, and kerosene-fired combustion turbines showed that the condensible PM, on average, comprises 69% of the total PM10 stack emissions. Based on these limited measurements, condensible PM can make a significant contribution to total PM10 emissions for fossil fuel-fired units. A positive bias (indicating more condensible PM than is actually emitted) may exist in the measured data due to the conversion of dissolved sulfur dioxide to sulfate compounds in the sampling procedure. In addition, these Method 202 results confirm that condensible PM, on average, is composed mostly of inorganic matter, regardless of the type of fuel burned.  相似文献   

16.
Total suspended and size-segregated atmospheric particles were collected in four seasons at three representative points in different functional areas of Dongguan City. The detailed size distributions of six nitro-PAHs [2-nitrofluorene (2-NF), 9-nitroanthracene, 2-nitrofluoranthene (2-NFL), 3-nitrofluoranthene, 1-nitropyrene, and 2-nitropyrene (2-NP)] were determined by high-performance liquid chromatography (HPLC) with UV detection using a binary elution gradient (methanol and water). We used a toxicity assessment based on potency equivalency factors (PEFs) to estimate the inhalation risk of the particulate matter. The results showed that, aside from 2-NF and 2-NFL, the content of the other four nitro-PAHs in the microparticles (<0.4 μm) were more than 20 %, a percentage significantly higher than other fractions of particulate matter. The seasonal distribution of nitro-PAHs shows that their concentrations were higher in the winter, while the PAH concentrations were higher in the summer. The study found that secondary formation (2-NFL and 2-NP) had a positive correlation with NO x and NO2, but a negative correlation with O3. The benzo[a]pyrene equivalent (BaPeq) toxicity of particulate matter in Dongguan City ranged from 0.04 to 2.63 ng m?3, and the carcinogenic index ranged from 0.04?×?10?6 to 2.39?×?10?6. These values do not represent a serious threat to human health.  相似文献   

17.
Nitro-PAH in ambient particulate matter in the atmosphere of Athens   总被引:2,自引:0,他引:2  
Nitrated polynuclear aromatic hydrocarbons (NPAH) with a molecular mass of 247 Daltons were found in soot collected in downtown Athens during a campaign performed in 1996. In particular, 2-nitrofluoranthene (2-NFa) and 2-nitropyrene (2-NPy), which are mainly related to photo-induced chemical processes occurring in the atmosphere, were more abundant than 1-nitropyrene (1-NPy) usually associated to motor vehicle exhaust.  相似文献   

18.
Assessment of human exposure to ambient particulate matter   总被引:8,自引:0,他引:8  
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in modern urban areas. In London in December 1952, the unexpected deaths due to PM exposure could be identified and counted as integers by the coroners. In modern times, the PM-related deaths cannot be as readily identified, and they can only be inferred as fractional average daily increases in mortality rates using sophisticated statistical filtering and analyses of the air quality and mortality data. The causality of the relationship between exposure to ambient PM and acute mortality at these lower modern PM concentrations has been questioned because of a perception that there is little significant correlation in time between the ambient PM concentrations and measured personal exposure to PM from all sources (ambient PM plus indoor-generated PM). This article shows that the critical factor supporting the plausibility of a linear PM mortality relationship is the expected high correlation in time of people's exposure to PM of ambient origin with measured ambient PM concentrations, as used in the epidemiological time series studies. The presence of indoor and personal sources of PM masks this underlying relationship, leading to confusion in the scientific literature about the strong underlying temporal relationship between personal exposure to PM of ambient origin and ambient PM concentration. The authors show that the sources of PM of non-ambient origin operate independently of the ambient PM concentrations, so that the mortality effect of non-ambient PM, if any, must be independent of the effects of the ambient PM exposures.  相似文献   

19.
Particulate matter (PM) and aerosols have became a critical pollutant and object of several research applications, due to their increasing levels, especially in urban areas, causing air pollution problems and thus effects on human health. The main purpose of this study is to perform a first long-term air quality assessment for Portugal, regarding aerosols and PM pollution. The CHIMERE chemistry-transport model, forced by the MM5 meteorological fields, was applied over Portugal for 2001 year, with 10 km horizontal resolution, using an emission inventory obtained from a spatial top-down disaggregation of the 2001 national inventory database. The evaluation model exercise shows a model trend to overestimate particulate pollution episodes (peaks) at urban sites, especially in winter season. This could be due to an underprediction of the winter model vertical mixing and also to an overestimation of PM emissions. Simulated inorganic components (ammonium and sulfate) and secondary organic aerosols (SOA) were compared to measurements taken at Aveiro (northwest coast of Portugal). An underestimation of the three components was verified. However, the model is able to predict their seasonal variation. Nevertheless, as a first approach, and despite the complex topography and coastal location of Portugal affected by sea salt natural aerosols emissions, the results obtained show that the model reproduces the PM levels, temporal evolution, and spatial patterns. The concentration maps reveal that the areas with high PM values are covered by the air quality monitoring network.  相似文献   

20.
Aerosol filter samples have been collected nearby the industrialised basin of Leipzig in Saxony (Germany) at the research station Melpitz of the Institut für Troposphärenforschung e.V. (IfT). Time series (1992–1998) and a three year comparison (1995–1997) of two different aerosol filter sampling systems, the Sierra-Andersen-PM 10 high volume sampler (daily sample, PM 10 inlet) and the Rupprecht and Patashnik Co. Inc. Model Partisol 2000 (weekly sample, PM 10 and PM 2.5 inlet) are presented and discussed. The comparison of the different sampling systems and strategies yields small differences between the daily and weekly samples for mass and different ions, which may be influenced by sampling duration and flow rates. A general trend of change in aerosol composition was observed: Soot and Sulphate concentrations decreased whereas Nitrate and Ammonium concentrations increased. During summers the mass of coarse particles is higher than in other seasons. One reason could be found in the occurence of longer periods of dry ground surfaces enabling reemission of crustal and biological material. The time series have been integrated in a longer historical aerosol mass trend for Saxony and do show a good agreement. Since 1990 a significant downward trend in gravimetric mass concentration was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号