首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01–0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6–14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.  相似文献   

2.
The response of phytoplankton assemblages to the closure of urban sewage outfalls (USOs) was examined for the Mar Piccolo of Taranto (Mediterranean Sea), a productive semi-enclosed coastal marine ecosystem devoted to shellfish farming. Phytoplankton dynamics were investigated in relation to environmental variables, with a particular emphasis on harmful algal blooms (HABs). Recent analyses evidenced a general reduction of the inorganic nutrient loads, except for nitrates and silicates. Also phytoplankton biomass (chlorophyll a) and abundances were characterized by a decrease of the values, except for the inner area of the basin (second inlet). The phytoplankton composition changed, with nano-sized species, indicators of oligotrophic conditions, becoming dominant over micro-sized species. If the closure of the USOs affected phytoplankton dynamics, however, it did not preserve the Mar Piccolo from HABs and anoxia crises. About 25 harmful species have been detected throughout the years, such as the potentially domoic acid producers Pseudo-nitzschia cf. galaxiae and P seudo-nitzschia cf. multistriata, identified for the first time in these waters. The presence of HABs represents a threat for human health and aquaculture. Urgent initiatives are needed to improve the communication with authorities responsible for environmental protection, economic development, and public health for a sustainable mussel culture in the Mar Piccolo.  相似文献   

3.
Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g?1 sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed.  相似文献   

4.
Concentrations of some metals (Cd, Cu, As, Hg, Pb) and polychlorinated biphenyls (PCBs) were investigated in edible marine organisms from different trophic levels and feeding behaviour like bivalve molluscs (Mytilus galloprovincialis and Chlamys glabra), gastropod molluscs (Hexaplex trunculus) and some commercial species of fish (Trachurus trachurus, Boops boops, Sarpa salpa and Gobius niger). These species were collected in the first inlet of the Mar Piccolo of Taranto (Ionian Sea, Southern Italy), classified as ‘Site of National Interest’ established by National Law 426 (1998) and included in the ‘National Environmental Remediation and Restoration Projects’. The aim of this work was to investigate contamination levels and public health risks, associated with consuming seafood harvested from these areas. Moreover, in this study, was also estimated the weekly intake in children and adults, both for metals and PCBs. In comparison with the permissible limits set by EC Regulations, Cd and Pb levels were over the limit in the H. trunculus (in all sampling stations) and in the fish T. trachurus respectively. PCBs were over the legal limit in all sampled species with the exception of M. galloprovincialis (station 1), C. glabra and the herbivorous fish S. salpa. In the fish T. trachurus, for example, the concentration of six target PCBs was about five times higher than the EC limit. The estimated intakes of those trace elements included in this study through seafood consumption by the population exceed the provisional tolerable weekly intake recommended by the Joint FAO/WHO Expert Committee on Food Additives for Cd and Hg in the H. trunculus and T. trachurus, especially in children. Moreover, hazard quotience (HQ) for Hg and Cd was >1 in the children for T. trachurus and H. trunculus consumption. As regard non-dioxin-like PCB (NDL-PCB), the estimated intake were always above the ‘provisional guidance value’ (70 ng/kg body weight) Arnich et al. (Regul Toxicol Pharm 54: 287–2, 2009) for all sampled organism. Thus, health risks due to the dietary Hg, Cd and PCBs intake, especially for children, cannot be excluded. Therefore, an extended remediation programme is necessary to safeguard marine ecosystem, human health and, not less important, the economic activities, in the Taranto marine area.  相似文献   

5.
In estuarine ecosystems, metallic and organic contaminants are mainly associated with fine grain sediments which settle on mudflats. Over time, the layers of sediment accumulate and are then transformed by diagenetic processes mainly controlled by microbial activity, recording the history of the estuary’s chemical contamination. In an environment of this specific type, we investigated the evolution of the chemical contamination and the structure of both total and active microbial communities, based on PhyloChip analysis of a 4.6-m core corresponding to a 40-year sedimentary record. While the archaeal abundance remained constant along the core, a decrease by one order of magnitude in the bacterial abundance was observed with depth. Both total and active microbial communities were dominated by Proteobacteria, Actinobacteria, and Firmicutes in all sediment samples. Among Proteobacteria, alpha-Proteobacteria dominated both total (from 37 to 60 %) and metabolically active (from 19.7 to 34.6 %) communities, including the Rhizobiales, Rhodobacter, Caulobacterales, and Sphingomonadales orders. Co-inertia analysis revealed a relationship between polycyclic aromatic hydrocarbons, zinc and some polychlorobiphenyls concentrations, and the structure of total and active microbial communities in the oldest and most contaminated sediments (from 1970 to 1975), suggesting that long-term exposure to chemicals shaped the structure of the microbial community.  相似文献   

6.
Biomarkers are internationally recognized as useful tools in marine coastal biomonitoring, in particular, as early-warning signals at the level of individual organisms to assess biological effects of pollutants and other stressors. In the present study, Mytilus galloprovincialis has been employed as a sentinel organism to assess biological pollution effects in the Mar Piccolo of Taranto (Southern Italy), a coastal lagoon divided into two small inlets, connected to the open sea through one natural and one artificial narrow openings. Mussels were collected in June 2013 at three sites located within each of the two inlets of the Mar Piccolo. Biological effects were investigated through a suite of biomarkers suitable to reflect effects and/or exposure to contaminants at biochemical and cellular levels. Biochemical biomarkers included glutathione-S-transferase (GST) and acetylcholinesterase (AChE) enzyme activities; as histochemical biomarkers, lysosomal membrane stability, lipofuscin and neutral lipid accumulation, and lysosomal structural changes were considered. As a whole, results highlighted differences among the three study sites, particularly for GST, AChE, and lipofuscins, which are consistent with the variations of the chemical pollutants in sediments. The applied biomarkers showed that a stress syndrome likely to be ascribed to environmental pollutants is occurring in mussels living in the Mar Piccolo of Taranto, in particular, the ones inhabiting the first inlet.  相似文献   

7.
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.  相似文献   

8.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

9.
Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.  相似文献   

10.
Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.  相似文献   

11.
Aquatic sediments are contaminated by a wide diversity of organic pollutants such as endocrine-disrupting chemicals (EDCs) which encompass a broad range of chemical classes having natural and anthropogenic origins. The use of in vitro bioassays is now widely accepted as an alternative method for their detection in complex samples. However, based on the diversity of EDC chemical properties, their common extraction is difficult and comprehensive validation of extraction methods for a bioanalysis purpose is still weakly documented. In this study, we compared the performance of several organic solvents, i.e., acetone, methanol, dichloromethane, heptane, dichloromethane/acetone (50:50, v/v), dichloromethane/methanol (50:50, v/v), heptane/acetone (50:50, v/v), and heptane/methanol (50:50, v/v), to extract a diversity of active chemicals from a spiked sediment matrix using pressurized liquid extraction. For this purpose, we defined a mixture of 12 EDCs with a wide range of polarity (2?<?log Kow?<?8) (i.e., estrone, 17β-estradiol, bisphenol A, o,p′DDT, 4-tert-octylphenol, fenofibrate, triphenyl phosphate, clotrimazole, PCB-126, 2,3,7,8 TCDD, benzo[k]fluoranthene, and dibenzo[a,h]anthracene). Working concentrations of each individual compound in the mixture were determined as equipotent concentrations on the basis of the concentration-addition (CA) model applied to in vitro estrogenic, dioxin-like, and pregnane X receptor (PXR)-like activities. Extraction efficiencies based on both chemical and biological analyses were assessed in triplicate in artificial blank sediment spiked with this mixture and in natural sediment contaminated by native EDCs. In both spiked and natural sediment, MeOH/DCM yields the best recovery while heptane was the least efficient solvent. Our study provided the validation of a sediment extraction methodology for EDC bioanalysis purposes, which can be used for comprehensive environmental contamination characterization.  相似文献   

12.
Concentrations of heavy metals (Cu, Ni, Zn, Cd and Pb) were measured in sediments, water and liver and kidney tissues of three Indian major carps (Labeo rohita, Catla catla and Cirrhinus cirrhosus), belonging to two different weight groups (250 and 500 g), collected from ponds at two different sites (Nalban bheri and Diamond Harbour). The tissues were analysed for the levels of different antioxidant defence systems such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRd), glutathione S-transferase (GST), glutathione (GSH) and malondialdehyde (MDA). Concentrations of all the metals were significantly higher (P < 0.05) in sediment, water and the tissues from Nalban bheri compared to those in Diamond Harbour. Metal concentrations were the lowest in C. cirrhosus, which increased with an increase in fish weight, and the liver accumulated higher amount of metals than the kidney. Activities of all enzymatic and non-enzymatic antioxidant parameters except GPx and GRd were significantly higher (P < 0.05) in the tissues from Nalban bheri than those in Diamond Harbour. Significant multicollinearity was found in the values of SOD, CAT, GST, GRd, GPx and MDA with Pb, Cu and Ni in all three fish species at Nalban and with Cd in L. rohita and C. catla. Principal component analysis results revealed that stress response in a polluted site was directly regulated by an amalgamation of GSH profile and the levels of MDA in a synchronized manner. The study indicated a tissue-specific and species-specific difference for heavy metal-induced oxidative stress response in fish and a correlation between different heavy metals and individual oxidative stress markers.  相似文献   

13.
In this study, the effect of the biostimulation of the autochthonous microbial community on the depletion of polychlorinated biphenyls (PCBs) in historically contaminated sediments (6.260?±?9.3 10?3?μg PCB/ g dry weight) has been observed. Biostimulation consisted of (1) the amendment of an electron donor to favor the dehalogenation of the high-chlorinated PCBs and (2) the vegetation of sediments with Sparganium sp. plants to promote the oxidation of the low-chlorinated PCBs by rhizodegradation. The effects of the treatments have been analyzed in terms of both PCB depletion and changes of the autochthonous bacterial community structure. The relative abundance of selected bacterial groups with reference to untreated sediments has been evaluated by quantitative real-time PCR. The amendment of acetate determined the enrichment of anaerobic dechlorinators like Dehalococcoides sp. Vegetation with Sparganium sp. plants determined the enrichment of either (3) the dechlorinators, Dehalococcoides and the Chloroflexi o-17/DF-1 strains or (4) the Acidobacteria, β-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacteroidetes, and Firmicutes. The combination of the two biostimulation strategy determined the 91.5 % of abatement of the initial PCB content.  相似文献   

14.
This study aimed to assess the benthic ecosystem trophic status in a heavily polluted marine area and the response of the microbenthic community to multiple and diffuse anthropogenic impacts, integrating information coming from the active and resting (plankton’s cysts) components of microbenthos. Two sampling campaigns were carried out in the period 2013–2014 and four sampling sites at different levels of industrial contamination were chosen within the first and second inlet of the Mar Piccolo of Taranto. The chemical contamination affected to a higher extent the active microbenthos than the resting one. In the central part of the first inlet, characterised by more marine features, thrives a very rich and biodiverse microbenthic community. In contrast, at the polluted site near the military navy arsenal, extremely low densities (9576?±?1732 cells cm?3) were observed for active microbenthos, but not for the resting community. Here, the high level of contamination selected for tychopelagic diatom species, i.e., thriving just above the surface sediments, while the other life forms died or moved away. Following the adoption of a 10 μm mesh, for the first time, resting spores produced by small diatoms of the genus Chaetoceros were found. Our results further indicate that although the Mar Piccolo is very shallow, the benthic system is scarcely productive, likely as a consequence of the accumulated contaminants in the surface sediments that probably interfere with the proper functioning of the benthic ecosystem.  相似文献   

15.
Lake Edku is one of the important fishing areas in the Nile Delta. It is exposed to different quantities of serious pollutants in particular metals. To overall appraise the risk and status of metals in the lake, a comprehensive study of total concentrations of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn) in sediments and spatial-temporal variations of these metals in the dissolved and suspended particulates, and some tissues of Tilapias niloticus, was conducted from ten sampling sites during 2016. Results showed that none of the investigated metals exceeded the limits considered as hazardous for aquatic life in water. The highest concentrations of Cd, Cu, Ni, and Zn were observed in suspended particulate matter, which may precipitate on the surface of the sediments. Potential ecological risk analysis of the majority of the investigated metals in the sediment indicated that Lake Edku posed a low ecological risk. The estimated values of all metals in tissues of Tilapia niloticus were below the international permissible limits. Moreover, the potential risk of metals to human via the consumption of Tilapia niloticus was estimated using the weekly intake levels, which was lower than the WHO’s safe provisional tolerant weekly intake levels. These results prove the importance of performing measurements of contaminants in various compartments of Lake Ecosystem including sediment, biota, and suspended particulate matter for proper management.  相似文献   

16.
Transport and fate of perfluoro- and polyfluoroalkyl substances (PFASs) in an urban water body that receives mainly urban runoff was investigated. Water, suspended solids, and sediment samples were collected during the monsoon (wet) and inter-monsoon (dry) season at different sites and depths. Samples were analyzed for C7 to C12 perfluoroalkyl carboxylate homologues (PFCAs) (PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA), perfluorohexane, perfluorooctane, and 6:2-fluorotelomer sulfonate (PFHxS, PFOS, and 6:2FtS, respectively), perfluorooctane sulfonamide (FOSA), N-ethyl FOSA (sulfluramid), N-ethyl sulfonamidoethanol (N-EtFOSE), and N-methyl and N-ethyl sulfonamidoacetic acid (N-EtFOSAA and N-MeFOSAA, respectively). Concentrations in wet samples were only slightly higher. The sum total PFAS (ΣPFAS) concentrations dissolved in the aqueous phase and sorbed to suspended solids (SS) ranged from 107 to 253 ng/L and 11 to 158 ng/L, respectively. PFOA, PFOS, PFNA, PFHxS, and PFDA contributed most (approximately 90 %) to the dissolved ΣPFASs. N-EtFOSA dominated the particulate PFAS burden in wet samples. K D values of PFOA and PFOS calculated from paired SS and water concentrations varied widely (1.4 to 13.7 and 1.9 to 98.9 for PFOA and PFOS, respectively). Field derived K D was significantly higher than laboratory K D suggesting hydrophobic PFASs sorbed to SS resist desorption. The ΣPFAS concentrations in the top sedimentary layer ranged from 8 to 42 μg/kg and indicated preferential accumulation of the strongly sorbing long-chain PFASs. The occurrence of the metabolites N-MeFOSAA, N-EtFOSAA and FOSA in the water column and sediments may have resulted from biological or photochemical transformations of perfluorooctane sulfonamide precursors while the absence of FOSA, N-EtFOSA and 6:2FtS in sediments was consistent with biotransformation.  相似文献   

17.
Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed.  相似文献   

18.
From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year?1, S0), current sediment burial (100 mm year?1, S10), and strong sediment burial (200 mm year?1, S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day?1)?≈?S20 (0.001710 day?1)?>?S0 (0.000768 day?1) (p?<?0.05). The macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p?>?0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future would have little influence on the stocks of these elements. With increasing burial depths, the P. australis was particularly efficient in binding Cu and Ni and releasing C, N, Pb, Cr, Zn, and Mn, implying that the potential eco-toxic risk of Pb, Cr, Zn, and Mn exposure might be very serious. This study emphasized the effects of different burials on nutrient and metal cycling and mass balance in the P. australis marsh of the Yellow River estuary.  相似文献   

19.
Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60–87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2–6.1 kton based on the biophysical model and 6.3–9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.  相似文献   

20.
The levels and specific profiles of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in Mytilus galloprovincialis from the Mar Grande and the Mar Piccolo of Taranto were determined during the extensive monitoring plan of Local Health Authority to assess PCDD/Fs and DL-PCBs contamination in food and farm products, within 20 km from the industrial areas of Taranto, between March and December 2011. The average Total Toxicity Equivalence (TEQ) values for the sum of PCDD/F and DL-PCBs ranged from 1.61 to 5.63 pg WHO2005-TEQ g?1 wet weight basis, with the highest in the first inlet of the Mar Piccolo. In particular, DL-PCBs were the dominant chemicals in all samples, followed by PCDFs and PCDDs. Congener patterns in mussels were similar, indicating a homogeneous behavior in studied areas and, probably, the same type of source. The seasonal concentrations trend showed a relevant increase of dioxin and dioxin-like PCBs TEQs during the summer months, exceeding the limits set by the European Community for food and foodstuff. Reducing PCDD/Fs and PCBs is necessary to decrease contamination levels in order to safeguard marine ecosystem and human health in the Taranto area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号