首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Global models for predicting woody plant richness from climate: comment   总被引:1,自引:0,他引:1  
Hawkins BA  Montoya D  Rodríguez MA  Olalla-Tárraga MA  Zavala MA 《Ecology》2007,88(1):255-9; discussion 259-62
  相似文献   

3.
Jobe RT 《Ecology》2008,89(1):174-182
One hypothesis for why estimators of species richness tend to underestimate total richness is that they do not explicitly account for increases in species richness due to spatial or environmental turnover in species composition (beta diversity). I analyze the similarity of a data set of native trees in Great Smoky Mountains National Park, USA, and assess the robustness of these estimators against recently developed ones that incorporate turnover explicitly: the total species accumulation method (T-S) and a method based on the distance decay of similarity. I show that the T-S estimator can give reliable estimates of species richness, given an appropriate grouping of sites. The estimator based on distance decay of similarity performed poorly. There are two main reasons for this: sample size effects and the assumption that distance decay of similarity exhibits a power law relationship. I show that estimators based on distance-decay relationships exhibit systematically lower rates of distance decay for samples with few individuals per site independent of environmental variation. Second, the data presented here and many other survey data sets exhibit exponential rather than power law distance-decay relationships. Richness estimators that explicitly incorporate beta diversity can be improved by beginning from an exponential distance-decay relationship and adjusting for the systematic errors introduced by small sample sizes.  相似文献   

4.
Visual cues are important navigational tools for many solitary foraging insects. In addition to information provided by path integration, desert ants learn and use visual cues for homing back to their nest. In this study, we compared the visually based learning of two desert ant species: the North African Cataglyphis fortis and the Australian Melophorus bagoti, each of which lives in ecologically similar but visually different environments. In our experiment, ants’ choice performance was measured by training foragers in a channel system. We used a decision box with two visual stimuli during their homebound trips, with one of the stimuli always being the correct one that provided thoroughfare. To determine any habitat effects on learning, we examined intraspecific comparisons in C. fortis with different nest surroundings. The intraspecific comparison in C. fortis revealed no differences in learning the task. In general, C. fortis showed little learning in our task and the results were similar for ants from barren and cluttered environments. Overall, M. bagoti learned the task faster and had a higher level of accuracy than C. fortis. One explanation for this species-specific difference could be that the cluttered habitat of M. bagoti favours the evolution of visual associative learning more so than the plain habitat of C. fortis.  相似文献   

5.
In recent decades numerous diversity indices have been introduced. Among them the quadratic entropy index Q expresses the mean difference between two individuals chosen from the community at random. Differing from diversity indices habitually employed, Q does not satisfy a property postulated earlier for those measures. Namely, the uniform distribution of species does not necessarily yield the maximal index value. Q is based on the difference matrix of species. For a given matrix one can seek for the vector yielding the maximum quadratic entropy. This task leads to a quadratic programming problem. Using the appropriate program of a program package, we determined the maximum vector for a genetic difference matrix of crane species, as published in the literature. We discovered that some components (frequencies) in the maximum vector are equal to zero. That is, by maximizing the quadratic diversity some species can be eliminated. We discuss briefly the possible implications of this observation. Moreover, even if all elements in the maximum vector are positive, the elements can differ.  相似文献   

6.
Summary Mixed species foraging flocks are a dominant component of the infra-structure of avian communities in neotropical forests. In Amazonia, these flocks consist of pairs of 10–20 species, many of which are permanently associated with mixed flocks. At least half of these flocking species maintain territories that correspond exactly to the flock home range. Small individuals that participate as permanent members of the flocks must adopt the large home range of the larger nucleus species. Therefore, the densities of smaller species are dependent on the availability and density of flocks rather than the availability of food resources. Single pairs of 4 small flocking species with individual body masses of 8 g occupied exclusive territories of 8–12 ha. These were the same exact territories that were defended by at least 6 other flocking species with individual body masses of up to 37 g. Because of their attachment to flocks with large territories, small species are expected to under-utilize available food resources. The under-utilization of food resources is expected to allow smaller species to coexist with greater niche overlap resulting in increased species richness. This hypothesis was tested by quantifying foraging niche in terms of foraging height, foraging maneuver, and prey substrate; and using these values in addition to body mass and bill size (length, depth and width) to determine relative niche overlap between large versus small species pairs.Smaller species had greater foraging overlap than large flocking species and particularly the three smallest species of the genus Myrmotherula; longipennis, axillaris and menetriesii had very high overlap (average foraging niche overlap for the 3 species=0.83±0.12 compared with 0.12±0.19 for all flocking species), similar body sizes (body masses differing by no more then 8%) and similar bill morphologies (maximum ratio in length=1.08, width=1.07, and depth=1.06). These results are consistent with the hypothesis that small species participating in Amazonian mixed flocks can coexist with greater niche overlap because their density is flock dependent rather than resource dependent.  相似文献   

7.
8.
9.
Many conservation actions are justified on the basis of managing biodiversity. Biodiversity, in terms of species richness, is largely the product of rare species. This is problematic because the intensity of sampling needed to characterize communities and patterns of rarity or to justify the use of surrogates has biased sampling in favor of space over time. However, environmental fluctuations interacting with community dynamics lead to temporal variations in where and when species occur, potentially affecting conservation planning by generating uncertainty about results of species distribution modeling (including range determinations), selection of surrogates for biodiversity, and the proportion of biodiversity composed of rare species. To have confidence in the evidence base for conservation actions, one must consider whether temporal replication is necessary to produce broad inferences. Using approximately 20 years of macrofaunal data from tidal flats in 2 harbors, we explored variation in the identity of rare, common, restricted range, and widespread species over time and space. Over time, rare taxa were more likely to increase in abundance or occurrence than to remain rare or disappear and to exhibit temporal patterns in their occurrence. Space–time congruency in ranges (i.e., spatially widespread taxa were also temporally widespread) was observed only where samples were collected across an environmental gradient. Fifteen percent of the taxa in both harbors changed over time from having spatially restricted ranges to having widespread ranges. Our findings suggest that rare species can provide stability against environmental change, because the majority of species were not random transients, but that selection of biodiversity surrogates requires temporal validation. Rarity needs to be considered both spatially and temporally, as species that occur randomly over time are likely to play a different role in ecosystem functioning than those exhibiting temporal structure (e.g., seasonality). Moreover, temporal structure offers the opportunity to place management and conservation activities within windows of maximum opportunity.  相似文献   

10.
The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion.  相似文献   

11.
Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness.  相似文献   

12.
Zeiter M  Stampfli A  Newbery DM 《Ecology》2006,87(4):942-951
Species coexistence and local-scale species richness are limited by the availability of seeds and microsites for germination and establishment. We conducted a seed addition experiment in seminatural grassland at three sites in southern Switzerland and repeated the experiment in two successive years to evaluate various circumstances under which seed limitation and establishment success affect community functioning. A collection of 144,000 seeds of 22 meadow species including grasses and forbs of local provenance was gathered, and seeds were individually sown in a density that resembled natural seed rain. The three communities were seed limited. Three years after sowing, single species varied in emergence (0-50%), survival (0-69%), and establishment rates (0-27%). One annual and 13 perennial species reached reproductive stage. Low establishment at one site and reduced growth at another site indicated stronger microsite limitation compared to the third site. Recruitment was influenced by differences in abiotic environmental conditions between sites (water availability, soil minerals) and by within-site differences in biotic interaction (competition). At the least water-limited site, sowing resulted in an increase in phytomass due to establishment of short-lived perennials in the second and third years after sowing. This increase persisted over the following two years due to establishment of longer-lived perennials. After sowing in a wetter year with higher phytomass, however, productivity did not increase, because higher intensity of competition in an early phase of establishment resulted in less vigorous plants later on. Due to the generally favorable weather conditions during this study, sowing year had a small effect on numbers of established individuals over all species. Recruitment limitation can thus constrain local-scale species richness and productivity, either by a lack of seeds or by reduced seedling growth, likely due to competition from the established vegetation.  相似文献   

13.
Species interactions are widely assumed to be stronger at lower latitudes, but surprisingly few experimental studies test this hypothesis, and none ties these processes to observed patterns of species richness across latitude. We report here the first experimental field test that predation is both stronger and has a disproportionate effect on species richness in the tropics relative to the temperate zone. We conducted predator-exclusion experiments on communities of sessile marine invertebrates in four regions, which span 32 degrees latitude, in the western Atlantic Ocean and Caribbean Sea. Over a three-month timescale, predation had no effect on species richness in the temperate zone. In the tropics, however, communities were from two to over ten times more species-rich in the absence of predators than when predators were present. While micro-and macro-predators likely compete for the limited prey resource in the tropics, micropredators alone were able to exert as much pressure on the invertebrate communities as the full predator community. This result highlights the extent to which exposure to even a subset of the predator guild can significantly impact species richness in the tropics. Patterns were consistent in analyses that included relative and total species abundances. Higher species richness in the absence of predators in the tropics was also observed when species occurrences were pooled across two larger spatial scales, site and region, demonstrating a consistent scaling relationship. These experimental results show that predation can both limit local species abundances and shape patterns of regional coexistence in the tropics. When preestablished diverse tropical communities were then exposed to predation for different durations, ranging from one to several days, species richness was always reduced. These findings confirmed that impacts of predation in the tropics are strong and consistent, even in more established communities. Our results offer empirical support for the long-held prediction that predation pressure is stronger at lower latitudes. Furthermore, we demonstrate the magnitude to which variation in predation pressure can contribute to the maintenance of tropical species diversity.  相似文献   

14.
The information on temperature-mediated changes in biodiversity in local assemblages is scarce and mainly addresses the change in species richness. However, warming may have more consistent effects on species turnover than on the number of species. Moreover, very few studies extended the analysis of changes in biodiversity and species composition to questions of associated ecosystem functions such as primary production. Here, we synthesize 4 case studies employing microalgal microcosms within the Aquashift priority program to ask (1) do warming-related shifts in species richness correspond to changes in the rate of biomass production, (2) do similar relationships prevail for evenness, and (3) do warming-related shifts in species turnover stabilize or destabilize biomass production? Two of the four cases are previously unpublished, and for a third case, the link between diversity and functional consequences of temperature was not analyzed before. We found accelerated loss of species with warming in all cases. Biomass production was lower with lower species richness in most cases but increased with lower evenness. Most importantly, the relation between functional and compositional stability was different between cases: More rapid extinction resulted in more variable biomass in 2 cases conducted with a limited species pool, indicating that compositional destabilization relates to functional variability. By contrast, the only experiment with a large species pool (30 species) allowed previously rare species to become dominant in the community and showed more stable biomass at high turnover, indicating that compensatory dynamics (turnover) can promote functional stability. These 4 independent experiments highlight the need to consider both compositional and functional consequences of altered temperature regimes.  相似文献   

15.
Development of a mechanistic understanding and predictions of patterns of biodiversity is a central theme in ecology. One of the most influential theories, the intermediate disturbance hypothesis (IDH), predicts maximum diversity at intermediate levels of disturbance frequency. The dynamic equilibrium model (DEM), an extension of the IDH, predicts that the level of productivity determines at what frequency of disturbance maximum diversity occurs. To test, and contrast, the predictions of these two models, a field experiment on marine hard-substratum assemblages was conducted with seven levels of disturbance frequency and three levels of nutrient availability. Consistent with the IDH, maximum diversity, measured as species richness, was observed at an intermediate frequency of disturbance. Despite documented effects on productivity, the relationship between disturbance and diversity was not altered by the nutrient treatments. Thus, in this system the DEM did not improve the understanding of patterns of diversity compared to the IDH. Furthermore, it is suggested that careful consideration of measurements and practical definitions of productivity in natural assemblages is necessary for a rigorous test of the DEM.  相似文献   

16.
The species richness of sessile organisms on settlement panels on a coral reef was measured by the slope of a regression of loge number of species against loge area of sample. At a well illuminated site where panels were colonised by algae, the species richness of algae was 19% smaller on surfaces grazed by fishes than on protected surfaces. At a second site in a cave, the species richness of animals on grazed surfaces was 20% greater than on protected surfaces. These results are discussed in the light of differences between the sites. The contrasting effects of predation at the two sites are probably the result of more selective predation at the cave site than at the other site.  相似文献   

17.
Hugueny B  Cornell HV  Harrison S 《Ecology》2007,88(7):1696-1706
Many natural communities exhibit positive relationships between local and regional species richness (LSR-RSR relationships), which can be either linear or curvilinear. Previous models have shown that the form of this relationship depends on the relative rates of colonization and extinction and the sensitivity of these rates to competition. We use simple models to show that the LSR-RSR relationship also depends on the type of metacommunity structure (Levins-like or mainland-island), and our models generate a wider range of realistic forms than do most previous models. We parameterize and test our models with two independent data sets for Daphnia in rock pools on islands in Finland and Sweden. We find that the Levins-like model with competition correctly predicts the observed LSR-RSR relationship and provides the best fit to the average local species richness per island. Simulations show that our models are robust to relaxing our assumption of identical species properties. Our study is one of the first to make and successfully test quantitative predictions for how a widely studied community pattern, the LSR-RSR relationship, arises from metacommunity dynamics.  相似文献   

18.
Peay KG  Garbelotto M  Bruns TD 《Ecology》2010,91(12):3631-3640
Dispersal limitation plays an important role in a number of equilibrium and nonequilibrium theories about community ecology. In this study we use the framework of island biogeography to look for evidence of dispersal limitation in ectomycorrhizal fungal assemblages on "tree islands," patches of host trees located in a non-host vegetation matrix. Because of the potentially strong effects of island area on species richness and immigration, we chose to control island size by sampling tree islands consisting of a single host individual. Richness on tree islands was high, with estimates ranging up to 42 species of ectomycorrhizal fungi associating with a single host individual. Species richness decreased significantly with increasing isolation of tree islands, with our regression predicting a 50% decrease in species richness when tree islands are located distances of approximately 1 km from large patches of contiguous forests. Despite the fact that fungal fruit bodies produce large numbers of spores with high potential for long-distance travel, these results suggest that dispersal limitation is significant in ectomycorrhizal assemblages. There were no discernible effects of isolation or environment on the species identity of tree island fungal colonists. In contrast to the highly predictable patterns of tree island colonization we observed in a previous study on early successional forests, we suggest that over longer time periods the community assembly process becomes more dominated by stochastic immigration and local extinction events.  相似文献   

19.
Gillman LN  Wright SD 《Ecology》2006,87(5):1234-1243
Despite much scrutiny the relationship between productivity and species richness remains controversial, and there is little agreement about causal processes. We present the results of a survey of 159 productivity-plant species richness (P-PSR) relationships from 131 published studies. We critically assessed each study with respect to experimental design and for the appropriateness of the surrogates used for productivity. We were able to accept only 60 of the reported relationships as robust tests of the P-PSR relationship and a further 18 as robust tests of the biomass species richness relationship. Previous analyses have found that unimodal P-PSR relationships predominate. In contrast, we found that, in studies that used data of continental to global extent, all P-PSR relationships were positive regardless of grain, that almost all were also positive in data sets of regional extent, and that unimodal relationships were not dominant even in studies of fine grain or small spatial extent. Our results differ substantially from previous meta-analyses because previous studies have included a large number of studies that do not meet basic experimental design criteria for objectively testing P-PSR relationships. These results have important implications for theory that attempts to explain species richness patterns. We critically review four dominant theories in light of our results and develop new falsifiable predictions of relationship from these theories at both small and large spatial scales.  相似文献   

20.
What are the local community consequences of changes in regional species richness and composition? To answer this question we followed the assembly of microarthropod communities in defaunated areas of moss, embedded in a larger moss "region." Regions were created by combining moss from spatially distinct sites, resulting in regional species pools that differed in both microarthropod richness and composition, but not area. Regional effects were less important than seasonality for local richness. Initial differences in regional richness had no direct effect on local species richness at any time along a successional gradient of 0.5-16 months. The structure of the regional pool affected both local richness and local composition, but these effects were seasonally dependent. Local species richness differed substantially between dates along the successional gradient and continued to increase 16 months after assembly began. To the best of our knowledge, this is the first critical test of saturation theory that experimentally manipulates regional richness. Further, our results failed to support the most important mechanisms proposed to explain the local richness-regional richness relationship. The results demonstrate that complicated interactions between assembly time, seasonality, and regional species pools contribute to structuring local species richness and composition in this community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号