首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Maize (Zea mays, L.) plants were exposed intermittently to O(3), HF or both pollutants and the progression of foliar senescence was followed by measuring chlorophyll loss, membrane breakdown and changes in stomatal conductance. At concentrations insufficient to cause foliar symptoms (0.06 microl O(3) litre(-1) and 1.0 microg Fm(-3)), exposures to HF had little or no effect, whereas O(3) exposures accelerated the rate of senescence. The rapid rate of senescence produced by O(3) was moderated if the plants were also exposed to HF. Topical application of 6-benzyladenine (BA) prior to pollutant exposures delayed senescence in all plants and completely prevented the O(3)-induced acceleration of senescence.  相似文献   

2.
Bush bean (Phaseolus vulgaris L.) lines 'S156' (O3-sensitive)/'R123' (O3-tolerant) and cultivars 'BBL 290' (O3-sensitive)/'BBL 274' (O3-tolerant) were used to study the effects of O3 on stomatal conductance (gs), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O3 and plasticity of stomatal properties in response to O3. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O3 sensitivity and gs: while 'S156' had higher gs rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. Gs rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O3-tolerant counterparts. Exposure to O3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O3-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O3 concentrations (30 ppb). Exposure to O3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O3-sensitive cultivars.  相似文献   

3.
Chongqing, a city with a population of >2.5 million, constitutes the biggest industrial and commercial centre in southwest China. Recent industrialization has led to an increasing air pollutant problem which is exacerbated by the topography and prevailing climate of the region. To date, interest has remained firmly focused on the levels of traditional air pollutants (sulphur dioxide [SO2], oxides of nitrogen [NOx], smoke and suspended particulate matter [SPM]), with little attention paid to photochemical oxidants such as ozone (O3). This paper reports the first assessment of ambient O3 levels in southwest China. Measurements were made in and around Chongqing using a combination of UV-absorption (at a site located in the northern sector of the city) and passive samplers (at 20 sites located in and around the city) between 1993 and 1996. The 7-h daily mean O3 concentrations ranged between 2 and 16 ppb (x10(9)) during the winter months, increasing to 18-41 ppb during the summer (June-August), when peak hourly mean O3 concentrations of 93 ppb were attained. Ozone exposures across the region commonly approached (or exceeded) UN-ECE and WHO short-term guidelines for the protection of crops. In addition, controlled chamber studies, in which 11 cultivars of Chinese crops commonly grown in the Chongqing region were screened for relative O3 sensitivity, indicated the potential for subtle effects on the growth of a number of crop plants, if ambient O3 levels continue to rise in the region. Employing ozone exposures somewhat higher than those experienced in the field, several cultivars of commonly grown Chinese cereal, vegetable and salad crops were found to be sensitive to O3 in terms of growth, but this was not always associated with the appearance of visible symptoms of injury and, in contrast to what was generally expected, only three species showed significant O3-induced reductions in root:shoot partitioning. There is a clear and urgent need for a comprehensive study of ambient air quality and its impact on crops and natural vegetation in this, as in other, rapidly developing regions of China.  相似文献   

4.
The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).  相似文献   

5.
Of the so-called criteria air pollutants, ozone (O3) and sulfur dioxide (SO2) are relevant to agriculture due to their known toxic (O3, SO2) and fertilizing (SO2) potentials. A proper entity to describe pollutant doses in dose-response relationships is the cumulative flux density absorbed by the respective receptor systems. For nutrient budgets the whole ecosystem acts as receptor; for toxicological considerations, stomatal uptake has to be considered primarily. In Central Europe, the atmospheric inputs of oxidized S (SO2, SO3(2-) and SO4(2-)) have declined from the past, and at present are generally below the nutrient requirements of agroecosystems. In contrast, the phytotoxic potential of O3 has increased during the last decade. Pollutant absorbed doses and weighted concentrations were used to describe the risk potential. It could be shown that these two differ significantly.  相似文献   

6.
Fourteen Italian cultivars of Phaseolus vulgaris were exposed to a single pulse of ozone (O(3), 150 nl l(-1)) or to filtered air (<3 nl l(-1)) for 3.5 h. O(3) sensitivity was assessed by recording the extent of visible symptoms, effects on chlorophyll (Chl) content and changes in Chl a fluorescence parameters. This paper reports the results of an initial screening of 14 bean cultivars that was used to select a small number of cultivars for further work. Seven cultivars showed visible symptoms of injury in the range of 2-60 h after the end of the O(3) fumigation. O(3) significantly depressed total Chl content in most cultivars and a significant correlation was found between Chl content and visible symptoms. Most cultivars showed a significant change in the F(v)/F(m) ratio, even when there were no visual symptoms. There was no relationship between the extent of visual symptoms and quenching coefficients, indicating that these parameters were of no use in the determination of sensitivity to O(3) stress.  相似文献   

7.
The effects of the photochemical oxidant air pollutant ozone (O(3)) on growth and yield of three garden crops, broccoli (Brassica oleracea L.), lettuce (Lactuca sativa L.), and onion (Allium cepa L.) were studied in an open-top chamber experiment conducted in the field in southern California. Four cultivars each of leaf lettuce, broccoli, and globe onion were exposed to charcoal-filtered air (CF), non-filtered (NF) air, or NF plus 1.5 times ambient O(3) concentration from 4 weeks after germination in January or February until harvest. Exposures lasted 31 days for lettuce, 55 to 78 days for broccoli, and 105 days for onion. Results showed that despite severe O(3) injury to outer leaves, lettuce yields were not affected by O(3). Broccoli also was resistant to O(3) and no growth reduction was observed at ambient O(3) concentrations. Onions were more susceptible to O(3), but only one cv. 'Rio Bravo' had significant yield losses (ca. 5%) at ambient O(3) levels. These results suggest that, in general, concentrations of O(3) in the winter and spring may be below the threshold for adverse effects on yields of broccoli, lettuce and onion.  相似文献   

8.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

9.
Plants of rice (Oryza sativa) and white bean (Phaseolus vulgaris) were exposed to 524 microg m(-3) SO2, 392 microg m(-3) O3 and a mixture of both gases, i.e. 524 microg m(-3) SO2 and 392 microg m(-3) O3 to determine the visible foliar injury and leaf diffusive resistance. Response of leaf diffusive resistance was measured on upper and lower surfaces of leaves, i.e. the two unifoliate leaves of bean and the first, second and third primary leaves of rice. The difference in the response may be due to sensitive guard cells causing stomatal closure in the presence of O3, whilst a low concentration of SO2 caused the stomata to open. Thus, SO2 alone is known to decrease, and O3 tends to increase leaf diffusive resistance. However, exposure to both gases increases or decreases the resistance, depending on the species response.  相似文献   

10.
Defense and avoidance of ozone under global change   总被引:8,自引:0,他引:8  
The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing uptake. However, experimental evidence is inconclusive. Numerous results suggest that pollutants and factors subject to global change (drought, CO(2)) may interact and even exacerbate effects, probably because antioxidative defense systems are involved in both, defense against pollutant effects and protection from natural stress. An effective pollutant dose, which is weighted by physiological defense capacity, would better predict such effects. In this review paper we argue that the flux-based approach is imperfect, because global change effects may also modify the physiological susceptibility to ozone. Instead, a flux concept weighted by defense capacity should be tested.  相似文献   

11.
Air pollution can have direct effects on trees. It can cause visible injury to foliage and a disruption of physiological processes, such as photosynthesis and carbon allocation, leading to losses in growth and productivity. This review suggests that of equal or greater importance is the potential of air pollutants to indirectly affect tree growth and vitality by predisposing them to injury from other abiotic and biotic stresses. Predisposition by air pollutants can be the result of a disruption in biochemical processes, such as enzyme activity or production, or physiological factors (e.g. stomatal closure, carbon allocation). Air pollutants such as SO(2), O(3) and acidic mists have been implicated as predisposing agents to two of the most important of these stresses: low temperature and soil moisture. Probable mechanisms, as well as implications of predicted changes in global climate will be discussed.  相似文献   

12.
Open pollinated families of loblolly pine differing in resistance to fusiform rust disease were screened in laboratory studies for responses to gaseous air pollutants. Twenty families were given acute exposures (2 fumigations for 4 h each) to SO(2) (0.4-1.0 ppm), O(3) (0.25 ppm), SO(2) (0.4-1.0 ppm) + O(3) (0.25 ppm) and control. Analyses of variance were performed to evaluate the treatment effects of these air pollutants on percent foliar injury, and to determine whether the families responded differentially to the air pollution treatments. Treatment effects were significant, with the combination treatment of SO(2) + O(3) producing a higher percentage of foliar injury than the controls; however, injury levels were very low and may not be of biological significance. Subsequently, twelve families were grown in two soil types for exposure to chronic levels of SO(2) (0.06 ppm), O(3) (0.07 ppm), SO(2) (0.06 ppm) + O(3) (0.07 ppm) and control. The families were then ranked for decreased primary shoot growth, shoot dry weight, root dry weight, total plant dry weight and root/shoot ratio after exposure to air pollution treatments. Air pollution treatments as a main effect were significant for only one of five growth parameters measured, that of primary shoot growth. The main effect of family, and the interaction of family and air pollution treatments, were significant for most growth parameters measured. In general, O(3) alone and in combination with SO(2) reduced growth more than SO(2) alone. Fumigation with O(3) reduced growth of two families in comparison with control groups, whereas SO(2) alone produced decreased growth in one family and stimulated growth in three families. Treatment with O(3) alone produced higher root/shoot ratios than fumigation with charcoal-filtered air in two families. Overall, families which were fast growers under control conditions maintained their ranking after exposure to air pollution. Families producing less growth in charcoal-filtered air also produced less growth under various air pollution regimes. Results indicated that these families exhibited a high degree of resistance to air pollution injury. Growth responses of seedlings may not reflect family differences in long-term productivity. No relationship was apparent between fusiform rust resistance and growth reductions due to air pollutants.  相似文献   

13.
Dry deposition contributes a substantial part of the total deposition of acidic pollutants and acid precursors to agricultural systems. However, because of the relative intractability of measurement of dry deposition fluxes, little work has been done to directly quantify dry inputs of pollutants to crops. In this research, foliar surface sampling ('leaf-washing') methods were developed and shown to be a practical and fairly precise means of monitoring the accumulation of dry-deposited SO4(2-) and NO3- on plant surfaces. Leaching of these ions from plant tissues was shown to be negligible; however, uptake by plants (e.g. stomatal gas exchange of SO2 or HNO3 and/or assimilation of surface accumulations of materials) is not accounted for by the sampling method. The significance of dry deposition to modification of the chemical microenvironment of leaf surfaces appears to be a factor of 3 to 20 or more greater than that of wet deposition alone. This is due to the cyclic reactivation of accumulated materials by dew and light rains, which may dissolve and mobilize, but not remove, the pollutant surface deposit. Therefore, while dry deposition of SO2 and SO4(2-) containing particles may contribute only part of the total mass of sulfur inputs to crop systems, the exposure of plant surface tissue to pollutants can be dominated by the dry-deposited material. The alteration of leaf surface chemistry may contribute to possible stress-producing mechanisms such as reduction of cuticular integrity, cellular injury and death, enhanced leaching of primary and secondary metabolites, and changes in pathogen infection efficiency.  相似文献   

14.
Field studies were conducted at USDA Beltsville Agricultural Research Center, Beltsville, Maryland, in 1984 and 1985 using open-top chambers to acquire information on the responses of 12 soybean (Glycine max L. Merr.) cultivars to O3 stress and to examine the interactions between maturity groups and O3 stress. Cultivars representing Groups III, IV, and V were exposed for approximately 3 months to charcoal-filtered air (CF) and nonfiltered air plus 40 nl litre(-1) O3 (NF + O3). Ozone was added 6 h d(-1), 5 d week(-1) for 13 weeks. The CF effectively reduced the accumulative oxidant exposure (AOX) to less than 1.0 microl litre(-1) h and the NF + O3 treatment approximately doubled the ambient AOX (16.7 microl litre(-1) h) to about 30 microl litre(-1) h. The AOX estimates the total O3 exposure above 30 nl litre(-1) during an entire growing season. Plant growth rates and relative growth rates were reduced by 17.0 and 14.4%, respectively, when averaged over cultivars. Based on growth rates, the Group III cultivars were the most affected by O3 stress. Averaged over cultivars, leaf expansion rates, leaf conductance, and transpiration rates were lower in the NF + O3 treatment compared to the CF control; however, wide variation was found with the stomatal results from field observations. Combined over years and cultivars, grain yield was reduced by an average of 12.5% by O3 stress with 3 of 12 cultivars showing significant reductions. Grain protein content was increased by 0.7% by O3 stress, but cultivar differences were equal to the differences caused by the O3 treatments. Grain oil content was unchanged by the O3 treatments. Group IV cultivars showed the greatest decrease in grain yield due to O3 stress. Multiple regression analyses were calculated using the difference between the CF and NF + O3 treatment as a measure of O3 stress. Significant positive relationships were found among net assimilation rates, plant growth rates, relative growth rates, and leaf expansion rates, which suggest that growth analysis characteristics would be useful in addition to yield in air pollution tolerance improvement studies with soybeans.  相似文献   

15.
The stomatal resistance, measured with a ventilated diffusion porometer at various times before, during, and after exposure to 20–25 pphm ozone, was followed in water-stressed or well-watered beans, beans exposed at either low (37%) or high (73%) atmospheric humidity, and two tobacco cultivars exposed at the same two humidities. The two tobacco cultivars that were compared were the 03-susceptible Bel W-3 and the 03-resistant Consolidated L. The stomata of the water-stressed but unwilted bean plants closed quickly from a resistance of 2.9 ± 0.3 sec/cm to 8.4 ± 1.0 sec/cm when exposed to O3 whereas those in the unstressed plants closed slowly from a resistance of 2.5 ± 0.6 sec/cm to 5.2 ± 0.8 sec/cm after exposure to O3 for 10 min. Exposure to 03 for 30 min in the moist atmosphere caused no change in stomatal resistance of the bean plants whereas in the dry atmosphere the stomata closed from a resistance of 3.7 ± 0.4 sec/cm to 6.7 ± 0.6 sec/cm, but opened again when ozonation was terminated. With tobacco exposed to O3 in a dry atmosphere the stomata of the 03-resistant cultivar closed more rapidly than the 03-susceptible variety, whereas in a moist atmosphere the stomata of both cultivars closed slowly and equally during the 60 min of ozonation.  相似文献   

16.
European Holly (Ilex aquifolium) received either charcoal-filtered air (CFA) or CFA with 70 nl l(-1) ozone added for 7 h day(-1) over a 28 day period. Plants were then transferred into cooling incubators for hardening (4 degrees C day/2 degrees C night; day length 12 h) for 7 days and then to the frosting stage (2 degrees C day and -5, -10 or -15 degrees C night) for 4 days. The plants were then placed in ambient conditions. Treatment produced significant differences in chlorophyll fluorescence data. Stomatal conductance was significantly higher for the ozone treatments though both showed a general decline over all temperature regimes. Ozone also significantly increased electrolyte leakage and reduced winter survival. These results show that ambient concentrations of ozone can reduce the tolerance of I. aquifolium to freezing stress, which may have serious implications for its establishment and survival.  相似文献   

17.
Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.  相似文献   

18.
Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4(2-), and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4(2-) and non-SO4(2-) portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day. We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   

19.
In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models.  相似文献   

20.
Soybean [Glycine max (L.) Merr.] cultivars Essex and Forrest that exhibit differences in ozone (O(3)) sensitivity were used in greenhouse experiments to investigate the role of leaf extracellular antioxidants in O(3) injury responses. Charcoal-filtered air and elevated O(3) conditions were used to assess genetic, leaf age, and O(3) effects. In both cultivars, the extracellular ascorbate pool consisted of 80-98% dehydroascorbic acid, the oxidized form of ascorbic acid (AA) that is not an antioxidant. For all combinations of genotype and O(3) treatments, extracellular AA levels were low (1-30nmolg(-1) FW) and represented 3-30% of the total antioxidant capacity. Total extracellular antioxidant capacity was twofold greater in Essex compared with Forrest, consistent with greater O(3) tolerance of Essex. The results suggest that extracellular antioxidant metabolites in addition to ascorbate contribute to detoxification of O(3) in soybean leaves and possibly affect plant sensitivity to O(3) injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号