首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Understanding the effects of dams on the inundation regime of natural floodplain communities is critical for effective decision making on dam management or dam removal. To test the implications of hydrologic alteration by dams for floodplain natural communities, we conducted a combined field and modeling study along two reaches in the Connecticut River Rapids Macrosite (CRRM), one of the last remaining flowing water sections of the Upper Connecticut River. We surveyed multiple channel cross sections at both locations and concurrently identified and surveyed the elevations of important natural communities, native species of concern, and nonnative invasive species. Using a hydrologic model, HEC‐RAS, we routed estimated pre‐and post‐impoundment discharges of different design recurrence intervals (two year through 100 year floods) through each reach to establish corresponding reductions in elevation and effective wetted perimeter following post‐dam discharge reductions. By comparing (1) the frequency and duration of flooding of these surfaces before and after impoundment and (2) the total area flooded at different recurrence intervals, our goal was to derive a spatially explicit assessment of hydrologic alteration, directly relevant to natural floodplain communities. Post‐impoundment hydrologic alteration profoundly affected the subsequent inundation regime, and this impact was particularly true of higher floodplain terraces. These riparian communities, which were flooded, on average, every 20 to 100 years pre‐impoundment, were predicted to flood at 100 ? 100 year intervals, essentially isolating them completely from riverine influence. At the pre‐dam five to ten year floodplain elevations, we observed smaller differences in predicted flood frequency but substantial differences in the total area flooded and in the average flood duration. For floodplain forests in the Upper Connecticut River, this alteration by impoundment suggests that even if other stresses facing these communities (human development, invasive exotics) were alleviated, this may not be sufficient to restore intact natural communities. More generally, our approach provides a way to combine site specific variables with long term gage records in assessing the restorative potential of dam removal.  相似文献   

2.
ABSTRACT: Water quality and trophic conditions in the Feitsui Reservoir, a subtropical reservoir, were evaluated with data from a ten-year data base to depict the impacts of river impoundment upon the chemical and biological characteristics of a reservoir, and to discuss the effects of flushing rate on in-lake phosphorus concentrations and phytoplankton growth. The results of the investigation showed that during the incipient impounding period, the water quality in the Feitsui Reservoir was significantly affected by internal loadings from submerged vegetation and soil in the flooded area. Studies of the changes in phosphorus compounds indicated that total phosphorus concentration appeared to approach equilibrium after the seventh year of impoundment and that orthophosphate stabilized after the sixth year of impoundment. Concentrations of both phosphorus forms varied seasonally after attaining stability. Nitrogen compounds (NH3-N, NO3-N and NO2-N) approached equilibrium within three years after impoundment. The seasonal variation in carbon was correlated to the number of phytoplankton. The mean value of the N:P mass ratio has remained over 110 since year seven of impoundment (1990), indicating that phosphorus constitutes the potential limiting nutrient in the growth of phytoplankton. The rapid flushing rate (132.11 and 110.43 yr-1) in Feitsui Reservoir during the first and second impounding stages was a critical factor influencing the phytoplankton growth response to available nutrients.  相似文献   

3.
ABSTRACT: A comparison of municipal wastewater treatment plant (WWTP) and nonpoint source nutrient loads to Wisconsin's 14,927 inland lakes was performed. Only 65 of the 2,925 Wisconsin lakes having surface areas of at least eight ha and a maximum depth of at least 2.4 m had one or more WWTP's located within 40 km upstream; 99 of Wisconsin's 477 WWTP's were identified to be upstream of these 65 lakes. WWTP total nitrogen and total phosphorus loads to these 65 lakes were estimated using per capita influent loads and removal efficiencies based on wastewater treatment types. Nonpoint source nutrient loads were calculated utilizing nutrient export coefficients derived specifically for Wisconsin. Total nitrogen inputs to the lakes were dominated by nonpoint sources. The effectiveness of various phosphorus control programs to produce water quality improvements visible to the public was estimated to be as follows (going from most to least effective): municipal phosphorus removal and agricultural reductions, municipal phosphorus removal alone, agricultural reduction plus phosphate detergent ban, agricultural reductions alone, and phosphate detergent ban alone. The last option would not be expected to produce water quality improvement visible to the public in any Wisconsin lakes. The differences between the distributions in Wisconsin of population and inland lakes highlights the need to consider regional characteristics in any statewide water quality management plan.  相似文献   

4.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

5.
ABSTRACT: The impoundment of Richard B. Russell Lake resulted in the inundation of 3490 ha of forested area or 33 percent of the total area of the lake. Estimates of the total inundated leaf litter biomass were combined with a leaf litter decomposition study to determine the nutrient load and dissolved oxygen demand to the reservoir. Hickory leaf bags broke down most rapidly at the 3-m and 28-rn depths, followed by short-needle pine, white oak, a hardwood litter mixture, beech, and red oak. Leaf bags incubated at the 3-m depth exhibited significantly higher breakdown rates than those at the 28-m depth for most leaf types, due to differences in dissolved oxygen and temperature. Respiration rates of litter were also higher at the 3-m depth. Most leaf types accumulated nitrogen and phosphorus and lost organic carbon after an initial leaching period. Richard B. Russell Lake exhibited extensive anoxia and the buildup of total organic carbon, nitrogen, and phosphorus during summer stratification. Leaf litter breakdown accounted for 64 percent of the organic carbon increase but acted as a sink for nitrogen and phosphorus. The dissolved oxygen demand of the litter accounted for over 50 percent of the demand incurred in the lake.  相似文献   

6.
ABSTRACT: West Point Lake is a 10,360 ha mainstream impoundment of the Chattahoochee River located 95 kilometers downstream of Atlanta, Georgia. Origins and magnitude of external total phosphorus (TP) and total suspended solids (TSS) loads from the West Point Lake basin were estimated over a one-year period. Partitioning the drainage basin allowed the sources of these loads to be determined. The upper subbasin area, from Franklin, Georgia, to the headwaters of the Chattahoochee River, contributed 96 percent of the discharge and 97 percent of the TP and TSS loads into West Point Lake. The lower subbasin area, from Franklin to West Point Lake dam, only contributed 3 percent of the TP and TSS loads. Ninety-one percent and 87 percent of the TP and TSS loads, respectively, from the upper subbasin originated from the Atlanta area. Point sources discharged 70 percent and 3 percent of the upper subbasin TP and TSS loads, respectively. A large portion (66 percent) of the TP from the upper subbasin was in the bioavailable form.  相似文献   

7.
A waterhyacinth (Eichhornia crassipes) marsh occupying two-thirds of the basin of a small Florida impoundment has received sewage effluent for nearly 20 years. Water from the marsh flows into an area that is maintained free of waterhyacinths, and is discharged through wells at the far end of the impoundment. A water budget for the basin was estimated, and phosphorus concentrations were measured monthly at three stations in the marsh and at the discharge wells in the lake. Productivity levels were measured monthly where the marsh joins the lake and at the discharge wells. Only 16% of the phosphorus that enters the basin is stored. Gross primary productivity levels in the open-water areas are very high (22 gO2m2day), but high respiration rates appear to keep the lake in steady-state.  相似文献   

8.
The aim of this work was to investigate mercury (Hg) levels in six meso-scale watersheds (Upper Paranapanema, Aguapeí, Peixe, S?o José dos Dourados, Mogi-Gua?u, and Piracicaba) of the S?o Paulo state to contribute to a more comprehensive understanding of Hg contamination in Brazil. Water, sediment, bivalves, and fish samples were collected during 2001 at 11 sites. Fish were also collected in the Jurumirim and Salto Grande Reservoirs which are 39 and 52 yr old since impoundment, respectively. Results showed that Hg concentrations were low in almost all samples, except fish from Jurumirim Reservoir (total mercury [T-Hg] = 1.14 +/- 0.55 mg kg(-1) wet wt.). In spite of industrialization and high population, the results showed that there was no important source of Hg contamination in the investigated areas. The higher concentrations found in fish from Jurumirim seem to be the result of processes that favor Hg mobilization and methylation as a consequence of the impoundment of the reservoir area. The same levels were not observed in the Salto Grande Reservoir, probably because these are no longer significant due to the long time since the impoundment. To understand the dynamics of methylmercury (MeHg) production and its accumulation in fish, further studies are needed in the Jurumirim Reservoir. The results show that even at low T-Hg concentrations in sediment and water, concentrations in fish can reach values that pose concerns for consumption. This emphasizes the importance of designing an optimized biomonitoring program that can provide warning of biogeochemical conditions that promote formation of MeHg.  相似文献   

9.
ABSTRACT The effect of hydrologic and chemical processes on salinization of stored waters was determined for two small floodwater-retarding structures located in western Oklahoma. One structure, already designed to accommodate a large influx of sediment, was further overdesigned hydrologically by upstream diversion of approximately one-half the inflow. Over a 2-year period, the total salinity of stored waters increased approximately 22 times and the stored water volume decreased to 1/33 its initial volume in the overdesigned structure, while both volume and salinity of stored waters remained comparatively stable in the other structure. The lack of sufficient dilution by better quality surface runoff and the increased residence time of water in the impoundment apparently caused most of the salinity increase. The bulk of the salt load entering the over-designed structure, to be concentrated later by evaporation, was associated with base rather than storm inflow. After base inflow ceased, substantial losses of salt load and stored water occurred concurrently. The loss was not adequately explained by chemical precipitation in association with evaporation. Seepage and evaporation-associated variables appeared to account for much of the hydrologically unexplained loss of stored waters.  相似文献   

10.
ABSTRACT: Completion of a 1270 acre recreational impoundment (Legend Lake) in the glacial sands of Menominee County, Wisconsin, produced geochemical and hydrologic alterations in some nearby natural lakes. The impoundment was produced by the construction of three dams, one of which proved to be temporary, connecting 9 natural lakes and ponds of 383 acres with 951 acres of flooded lands. Water levels were raised 3–15 feet within the impounded area. Much of the flooded area was peat rich wetland associated with the prior drainage. Water depths are less than 15 feet in 70% of the impoundment. Three seepage lakes, located less than 1/2 mile from the impoundment, experienced shoreline flooding, shoreline and soil erosion, some tree kills, and increased turbidity. These lakes also experienced concentration increases in several chemical constituents which indicate an influx of impoundment water through a regional alternation in the groundwater flow paths. The three lakes were connected by canals, and a 2.3 cfs gravity drain with an auxiliary pumping station was built to return excess water to the outflow of the impoundment. Future projects of this type would benefit from a more extensive hydrologic and geochemical analysis prior to initiation. Had environmental assessments been required at the time of this development, as they now are in Wisconsin for similar projects, some of the problems encountered might have been alleviated.  相似文献   

11.
Carbon in the Vegetation and Soils of Great Britain   总被引:1,自引:0,他引:1  
•The total amount of carbon held by vegetation in Great Britain is estimated to be 114 Mtonnes. •Woodlands and forests hold 80% of the G.B. total although they occupy only about 11% of the rural land area. Broadleaf species hold about 50% of the carbon in woodlands and forests. •A map of carbon in the vegetation of Great Britain at 1 km×1 km resolution based on land cover identified in the I.T.E. Land Cover Map is presented. The predominant location of vegetation carbon is the broadleaved woodlands of southern England. •The amount of carbon in the soils of Great Britain is estimated to be 9838 Mt (6948 Mt in Scotland and 2890 Mt in England and Wales). •In Scotland, most soil carbon is in blanket peats, whereas most soil carbon is in stagnogley soils in England and Wales. •The carbon content of the soils of Great Britain is mapped at 1 km×1 km resolution. Scottish peat soils have the greatest density of carbon and in total contain 4523 Mt of carbon, 46% of the G.B. total.  相似文献   

12.
Abstract: In blackwater river estuaries, a large portion of external carbon, nitrogen, and phosphorus load are combined in complex organic molecules of varying recalcitrance. Determining their lability is essential to establishing the relationship between anthropogenic loads and eutrophication. A method is proposed in which organic C, N, and P are partitioned into labile and refractory forms, based upon first‐order decay estimated by biochemical oxygen demand relative to total organic carbon, and C:N and C:P ratios as a function of organic carbon lability. The technique was applied in developing total maximum daily loads for the lower St. Johns, a blackwater Atlantic coastal plain river estuary in Northeast Florida. Point source organic nutrients were determined to be largely labile. Urban runoff was found to have the highest relative labile organic N and P content, followed by agricultural runoff. Natural forest and silviculture runoff were high in refractory organic N and P. Upstream labile C, N, and P loads were controlled by autochthonous production, with 34‐50% of summer total labile carbon imported as algal biomass. Differentiation of labile and refractory organic forms suggests that while anthropogenic nutrient enrichment has tripled the total nitrogen load, it has resulted in a 6.7‐fold increase in total labile nitrogen load.  相似文献   

13.
The level of water demand for supplemental irrigation and the impact of such demand on water supplies were estimated, as a function of the price of corn (Zea Mays L.). The method of estimation was based on an economic analysis of irrigation practice which assumed constant irrigation costs, profit maximizing behavior on the part of irrigators, and which was deliberately structured to underestimate the level of irrigation water use. The analysis was applied to and used data from the Little Wabash basin in Illinois. No irrigation was predicted at a corn price below $3.50 per bushel. Between $3.50 and about $6.50 per bushel, irrigation was estimated to be profitable for a small region of the basin where acceptable groundwater was available. Above about $6.50 to $7.50, irrigation was found to be profitable in the remainder of the basin, where impoundment storage was required. The potential impact on the water resources of the basin is significant. For a corn price between $3.50 and about $6.50, the probability of a shortfall, defined as the event where the potential demand exceeds the supply, was estimated to be between 2 percent and 20 percent during the growing season. Above about $7.50, this probability was found to be about one-third. The development of policies to control withdrawals for irrigation and other uses is endorsed.  相似文献   

14.
It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level.  相似文献   

15.
ABSTRACT: Ground and surface water quality monitoring data from 71 municipal sanitary landfills in North Carolina were analyzed to determine the nature and extent of current contamination problems and identify any common characteristics associated with this contamination. A total of 322 surface and 411 ground water quality records were analyzed using the SAS data system. Almost all the landfill records included inorganic and heavy metal analyses while approximately half of the records also included organic analyses by CC/MS. Our analysis indicates that landfills are having measurable impacts on ground and surface water quality, but these impacts may not be as severe as is commonly assumed. Statistically significant increases were detected in the average concentrations in ground water and downstream surface water samples when compared to upstream surface water samples. The largest percentage increases were observed for zinc, turbidity, total organic carbon, conductivity, total dissolved solids, and lead. Violations of ground water quality standards for heavy metals and hazardous organic compounds were detected at 53 percent of the landfills where adequate data existed. The moat common heavy metal violations were for lead (18 percent), chromium (18 percent), zinc (6 percent), cadmium (6 percent), and arsenic (6 percent) (percentage of landfills violating shown in parenthesis). The organic compounds that appear to pose the greatest threat to ground water are the chlorinated solvents (8 percent), petroleum derived hydrocarbons (8 percent), and pesticides (5 percent). A comparison of monitoring data from sanitary landfills and secondary wastewater treatment plants suggests that the concentrations of heavy metal and organic pollutants discharged to surface waters from these two sources are similar.  相似文献   

16.
/ Three large rivers in northern Finland, the Kemijoki, Iijoki, and Oulujoki rivers, were dammed for hydropower generation in the 1940s-1960s. Due to differences in environmental conditions, these impoundments require detailed study to produce guidelines for fisheries management.Water quality, hydrology, vegetation, and geomorphology data of 16 impoundments were gathered. Shoreline land-use data were derived from maps, and fish assemblage data were collected by exploratory fishing and from the annual fishery statistics. The relations among environmental variables were studied, and a classification of the impoundments was developed by hierarchical cluster analysis. Consequently, three impoundment groups with different environmental characteristics were formed. Significant differences among impoundment groups were also detected in fish yield. We conclude that the variation in environmental conditions, together with differences in fish communities in the impoundments were important enough to justify the claim that impoundments of different types require different management strategies. KEY WORDS: Impoundments; River regulation; Fish assemblage; Water quality; Aquatic vegetation; Finland  相似文献   

17.
The environmental performance of hemp based natural fiber mat thermoplastic (NMT) has been evaluated in this study by quantifying carbon storage potential and CO2 emissions and comparing the results with commercially available glass fiber composites. Non-woven mats of hemp fiber and polypropylene matrix were used to make NMT samples by film-stacking method without using any binder aid. The results showed that hemp based NMT have compatible or even better strength properties as compared to conventional flax based thermoplastics. A value of 63 MPa for flexural strength is achieved at 64% fiber content by weight. Similarly, impact energy values (84–154 J/m) are also promising. The carbon sequestration and storage by hemp crop through photosynthesis is estimated by quantifying dry biomass of fibers based on one metric ton of NMT. A value of 325 kg carbon per metric ton of hemp based composite is estimated which can be stored by the product during its useful life. An extra 22% carbon storage can be achieved by increasing the compression ratio by 13% while maintaining same flexural strength. Further, net carbon sequestration by industrial hemp crop is estimated as 0.67 ton/h/year, which is compatible to all USA urban trees and very close to naturally, regenerated forests. A comparative life cycle analysis focused on non-renewable energy consumption of natural and glass fiber composites shows that a net saving of 50 000 MJ (3 ton CO2 emissions) per ton of thermoplastic can be achieved by replacing 30% glass fiber reinforcement with 65% hemp fiber. It is further estimated that 3.07 million ton CO2 emissions (4.3% of total USA industrial emissions) and 1.19 million m3 crude oil (1.0% of total Canadian oil consumption) can be saved by substituting 50% fiber glass plastics with natural fiber composites in North American auto applications. However, to compete with glass fiber effectively, further research is needed to improve natural fiber processing, interfacial bonding and control moisture sensitivity in longer run.  相似文献   

18.
The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.  相似文献   

19.
Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.  相似文献   

20.
The loss of phosphorus and sediment to surface waters can impair their quality. It was hypothesized that the practice of winter grazing dairy cattle on cropland of moderate slope (5-20%) would exacerbate the loss of P and suspended sediment (SS) from land to water. In a small (4.3 ha) catchment two flumes were installed, upstream and downstream of one field (about 2 ha) that had been cropped for 2 yr and grazed in winter (June-July) by dairy cattle. Flow proportional samples were taken and measured for dissolved reactive phosphorus (DRP), particulate phosphorus (PP), total phosphorus (TP), and SS. During the 2002 hydrologic year (March-February) loads of SS increased per hectare downstream (1449 kg ha(-1)) compared to upstream (880 kg ha(-1)). The same increase from upstream (873 kg ha(-1)) to downstream (969 kg ha(-1)) happened in 2003. However, while in 2003 TP increased downstream by 1.64 kg ha(-1) compared to upstream (0.24 kg ha(-1)), in 2002 an increase of only 0.006 kg ha(-1) at the downstream flume occurred compared to upstream (0.98 kg ha(-1)). Investigation of P transport pathways suggested that overland flow contributed <0.1 kg P ha(-1) to stream flow, 10 and 5% of TP load in 2002 and 2003, with the greater load in 2002 reflecting more rainfall in that year. The contribution to stream flow by subsurface flow was estimated at 0.3 kg P ha(-1). Stream bed sediments showed an increase in total P concentration in summer when no flow occurred due to the admission by the farmer of 10 cattle upstream of the cropped paddock in summer 2001-2002 and 20 cattle between the two flumes in 2003 to graze stream banks. This action was calculated to contribute via dung at least, the remaining P lost: about 0.5 kg P in 2002 and 1.0 kg P in 2003. Clearly, not allowing animals to "clear-up" stream banks is a priority if good surface water quality is to be achieved. Furthermore, compared to stock access the impact of winter grazing cropland on P losses was minimal, but SS load was increased by an average of 75%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号