首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
2.
Incorporation of environmental flow releases from reservoirs has proven to be challenging due to fear of losses to existing water uses. Moreover environmental flow requirements (EFR) have not often been operationalized. This study compares the possibility of implementing dynamic EFR based on natural flows lagged against an upstream unregulated gauging point with static EFR. It simulates different scenarios with a high flow release in the wet season and analyses its impacts on hydropower production. This method accounts fully for the natural variability of environmental flows, implying less pressure on existing water uses during relatively dry years. Joint operation of two cascading dams vs. individual operation for EFR was also explored. These approaches were tested for the Zambezi River basin in Southern Africa using a water resources model, WAFLEX. Historic data on reservoir water levels, releases and power generation of the hydropower schemes were synthesized. Combining these yielded a validated series of monthly flow data for a 28 year period (1982‐2010). The results show that Kariba and Cahora Bassa reservoirs face a reduction in power produced when they would annually release an environmental flow. However, the dynamic EFR method entails smaller hydropower losses. Joint environmental flow operations will reduce overall basin power production more than if Cahora Bassa alone would release an environmental flow. However, such joint operation would be more beneficial to the ecosystem.  相似文献   

3.
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries.  相似文献   

4.
ABSTRACT: A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards.  相似文献   

5.
Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.  相似文献   

6.
长期以来,我国对水电工程建设的环境管理实行环境影响评价和"三同时"制度,主抓环保审批和竣工验收两个环节,在工程施工阶段的环境管理相对薄弱,因此在水电资源开发的同时,也带来了一定程度的环境污染和生态破坏。为实现水电开发与环境保护的协调可持续发展,本文作者以某梯级电站为例,结合所参与的水电建设项目,对水电建设环境监理进行梳理和探讨,以期为水电建设项目环境监理的发展提供一定的理论及技术支持。  相似文献   

7.
岷江上游水电开发对环境的影响   总被引:6,自引:0,他引:6  
岷江上游水力资源十分丰富,随着西部大开发的进行,它已成为水电开发的重点区域,干流及支流的电站建设加速进行。自源头至汶川上游河段,实行六级梯级开发方案。但由于岷江水电工程主要是涵洞引水式,原来奔腾的河流变成了地下暗流,使得岷江的多处河段变得干涸,河谷的自然生境和景观发生了很大的变化,原来的干旱河谷气候变得更加干旱。也使河流生物系统受到严重影响。作者在对长江上游考察的基础上对岷江上游水电开发现状及其对环境的影响进行了分析,提出应该进行流域统一规划,强化执法监督,水电开发与环境保护建设并重;加强上中下游统一管理,注重流域综合开发等建议。  相似文献   

8.
ABSTRACT: The probable maximum flood (PMF) currently serves as the design standard for many U.S. dams. Floods used for design have increased and currently thousands of dams in the U.S. would be overtopped and possibly fail using the latest calculated PMF at each dam site. Some researchers have suggested that modifying dams to accommodate the PMF could be wasteful. Objections to using the PMF for dam modification include: (1) larger spillway capacity may increase annual downstream flood losses, (2) benefit‐cost ratios may be low, (3) construction accidents associated with dam modification may cause fatalities, and (4) the dollar amount spent to save lives by making dams safer is often very high. Based on these objections, a procedure is presented for evaluating the effectiveness of a proposed dam modification. A change in spillway design policy is recommended. Accepting the status quo at a dam that cannot accommodate the PMF may be the best course of action.  相似文献   

9.
Cheng, Chuntian, Jianjian Shen, Xinyu Wu, and Kwok-wing Chau, 2012. Short-Term Hydroscheduling with Discrepant Objectives Using Multi-step Progressive Optimality Algorithm. Journal of the American Water Resources Association (JAWRA) 48(3): 464-479. DOI: 10.1111/j.1752-1688.2011.00628.x Abstract: With increase in the number and total capacity of hydropower plants in power systems, optimality algorithms with a single objective are not suitable for optimizing the operation of complex hydropower systems to meet complex demands. Hydropower plants should prioritize discrepant objectives, such as peak regulation and maximizing generation during solving of optimal operation problems of hydropower systems. In this article, we present a multi-step progressive optimality algorithm (MSPOA) for the short-term hydroscheduling (STHS) problem to improve the quality of optimal solutions and enhance the convergence speed of progressive optimality algorithm (POA). In MSPOA, the original problem is first decomposed into a sequence of problems with the longer time steps. Next, the problem with the longest time step is solved, and the optimal solution is used as the initial solution for the problem with the second longest time step. This process proceeds until the original problem with the shortest time step is solved. The proposed discrepant-objective method and solution technique are tested for two types of hydroelectric systems. The results show that MSPOA can give better solutions and cost less time than POA due to enlarging feasible range of decision variables and reducing the number of computational stages. Discrepant objectives among hydropower plants can express the operation characteristics of complex hydropower systems more accurately than unique objective or multiple objectives.  相似文献   

10.
A multi-criteria analysis (MCA) was implemented to assess the best solutions for enhancing the production of renewable energy in the Alps. A set of criteria were selected based on the impacts of four renewable energy sources (forest biomass, hydropower, ground solar photovoltaic and wind power) on the three spheres of sustainability (environmental, social and economic). Three different scenarios are presented, each with a different set of weights for the criteria: the first scenario considers equally all three aspects of sustainability; the second scenario foresees an environmentally-oriented perspective, while the third scenario is more focused on the socio-economic aspects related to the development of renewable energy. Results show that forest biomass and hydropower seem to be the most viable solutions for enhancing the share of renewable energy in the Alps. Ground solar photovoltaic and wind power, on the other hand, seem to be less attractive alternatives due to their high impacts on land use.  相似文献   

11.
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the rivers water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the rivers seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the rivers thermal regime during certain conditions for over 200 km of the mainstem.  相似文献   

12.
/ There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders  相似文献   

13.
The apparent effect of selected reservoir environmental variables-including surface area, mean depth, outlet depth, thermocline depth, water level fluctuation, storage ratio, shore development, total dissolved solids, growing season and age of reservoir–on fish standing crop in 140 large impoundments has been explored through partial correlation and multiple regression analyses. The sample was partitioned into 25 subsamples based on reservoir use type, water exchange rate, thermocline formation and water chemistry. Fish standing crops were estimated by summer rotenone sampling of coves or open water areas enclosed by blockoff net. Logarithmic partial correlation revealed highly significant (0.01 confidence shore development and dissolved solids on At the 0.20 confidence level, the crop of storage ratio and shore level) positive effects of outlet depth, total standing crop in the entire sample. all sport fishes is positively influenced by outlet depth, development and negatively by mean depth. In 54 hydropower reservoirs with a stable thermocline, positive effects of increased storage ratio and dissolved solids on t o t a l crop are evident at the 0.05 confidence interva. Increase in thermocline depth has a negative effect. In 25 hydropower reservoirs without a stable thermocline, clupeid (shad) crop is negatively correlated with surface area, mean depth and fluctuation. Reservoirs with a thermocline have higher standing crops than those without. At the species or species group level, partial correlation of nine environmental variables a t the 0.05 confidence interval reveals: Positive effect of surface area on pike and pickerel; buffalo-fishes, white crappie and total sport fish crop; positive effect of outlet depth on largemouth bass, catfishes, total sport fish crop and buffalofishes; a negative effect of water level fluctuation on pike and pickerel, redear sunfish and gizzard shad; a positive relationship between storage ratio and channel catfish and bull- heads and a negative one with flathead catfish and suckers; a positive effect of total dissolved solids on black and whit basses, catfishes, gizzard shad, carpsuckers and carp. A morphoedaphic expression, total dissolved solids divided by mean depth, provides a useful index t o reservoir fish production. The relationship is curvilinear, with maximum crops expected at index values of 5 t o 30.The index accounts for 62 percent of the variability in hydropower storage reservoir crops. Several multivariable regressions have been derived f o r predictive purposes. Examples are included, with R values of 35 t o 60.  相似文献   

14.
15.
新疆水利资源丰富,具有开发水电的天然资源优势。清洁发展机制是建立在《京都议定书》下的国际合作机制。发达国家和发展中国家可以通过清洁发展机制,实现温室气体的减排和可持续发展。结合目前水电开发面临的实际形势,并根据我区能源开发总体规划布局,对水电CDM项目开发活动进行统筹协调,进一步促进新疆水电的快速、有序、均衡、协调发展。  相似文献   

16.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

17.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

18.
ABSTRACT: Over 76,000 dams have been constructed on American rivers to provide services such as flood protection, water storage, hydroelectric power, and navigation. Although most dams continue to provide sufficient benefits to retain the structure, dam removal is becoming increasingly common. This study involved the construction of a dam removal database to analyze spatial and temporal trends in dam removal. The data included information on 417 cases of dismantled American dams, 153 with known rationales for removal. Database analysis indicated that the leading purposes for dismantling structures are safety concerns and interest in environmental restoration. There is substantial geographic variability in dam removal rationales, with California leading in razing dams for environmental purposes, and Wisconsin leading in economic and safety rationales. States with substantial removals tend to have programs that support and fund dam razing. Although removals for safety reasons have been increasing steadily in the past three decades, environmental removals made a rather dramatic and sudden entry into the dam removal arena in the 1990s. Analysis of spatial and temporal trends in dam razing are of particular significance given the likely increase in dam removals in the 21st Century.  相似文献   

19.
In the last three decades, there has been an unprecedented upsurge in dam construction in Nigeria to store water for year-round water supply, irrigation and fisheries. Out of a total of 323 dams identified in the literature, 246 (76.2%) were constructed since 1970. Although only 47 of the reservoir lakes have been surveyed for snail intermediate hosts and 11 of the 47 for human infection, the results obtained by the various workers are very revealing. Snail hosts of schistosomiasis were found in 20 (42.6%) of the 47 lakes and human infection in 10 (90.9%) of the 11 lakes investigated for the respective purposes. These findings show that dam construction is contributing to schistosomiasis transmission in Nigeria and, unless urgent steps are taken to reverse the situation, the adverse health consequences of the dams will more than balance their socio-economic benefits. This paper discusses these problems in the context of existing institutional and legal frameworks in Nigeria and identifies appropriate measures, that could achieve sustainable water resources development in the future.  相似文献   

20.
Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil’s proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country’s national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号