首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
ABSTRACT Irrigated land outproduces dryland agriculture, especially in the western United States. Many valuable crops could not be grown without irrigation. A paucity of yield data does not allow direct measurement of the contribution from irrigated crop agriculture, nor does it allow evaluation of the contributions from livestock which are dependent upon irrigated feed. Regression results indicate that 80 percent of Idaho farm income is associated with irrigation, and that 75 percent of the farm income in the 17 western states is associated with irrigation. For the United States as a whole, results indicate that 13.7 percent of the total cropland (irrigated land) produced 41.3 percent of all cash receipts from farming in 1978. If 14 percent of the land can produce 40 percent of the value of production, can 35 percent of our land produce all our food and fiber needs? Such an allegation has several implications in terms of the adequacy of our land and water resources. It also emphasizes the role of technology in future resource use and production.  相似文献   

2.
ABSTRACT: Economic models sometimes indicate that irrigation water is misallocated in agriculture, especially when it appears that the marginal value product is higher in other uses (such as for hydro-power). Historically, trends tend to contradict this reasoning, however, especially since irrigation has grown from 20 million acres in 1940 to over 50 million acres in 1980. Results of this study tend to indicate that as agriculture becomes more and more intensive (in terms of inputs), irrigation is part of that long term trend. Further, major economic variables, such as output and investments in agriculture, appear to be more highly correlated with irrigated land than with dryland agriculture. Recent data indicate an upper limit of about 320 million acres for dryland farming in the United States, while no such constraint is apparent for irrigated agriculture.  相似文献   

3.
ABSTRACT: From 1940 to 1978, irrigated acreage in the Western United States increased by over 150 percent, irrigated acres per farm increased by 204 percent, and the number of irrigation organizations grew by 31 percent. Understanding the factors affecting these trends (in the structure of irrigated agriculture) is the key to formulating policies for efficient allocation and transfer of water in the west. Four variables that impact the composition of irrigation organizations are farm size changes, organizational efficiency, intersectoral competition for water, and governmental policies. The conclusions show that from 1940 to 1978, the total number of irrigated farms and organizations declined, and the average farm size increased, and larger management oriented organizations such as districts and U.S. Bureau of Reclamation have become more prevalent. With respect to total quantities of water delivered, districts have increased over 50 percent since the 1959 Census and over 100 percent since the 1950 Census, while unincorporated mutuals have declined by approximately 20 percent. Future organizational structure tends to be moving in the direction of more management control as opposed to user control. Changes in water use, delivery, investment, transfers, and laws will continue to change the structure of irrigation organizations and institutions in the west.  相似文献   

4.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

5.
ABSTRACT: Irrigation in arid and semiarid regions has led to accumulation of salts, destruction of soil texture, decline in fertility and yield, and eventual abandoning of the land. The problems of irrigated agriculture may be attributed to the fact that managers seldom consider irrigated land as a system consisting of a number of components and that the individual health of each component is vital to the overall health of the entire system. A management model is described here which considers all the important components of an irrigated system and may help maintain a permanent irrigated agriculture. The model optimizes net farm income, maintains favorable hydrologic and salt balance in the irrigated system, meets the concentration requirements of the drainage water for the individual crops, and simulates the impact of the irrigation on the unsaturated and the saturated zone.  相似文献   

6.
When evaluating the potential of irrigation for agricultural production one must consider more than the technical and financial potential and feasibility of the scheme. Issues of environmental and social sustainability must also be considered. The purpose of the paper is to develop a framework for assessing the sustainability of an irrigation scheme and apply it in the context of one such scheme in south eastern Nigeria. The framework for assessment is based on a comparison of differential changes in environmental quality with and without the scheme, and before and after the scheme. The author does this by using measured soil characteristics for irrigated and adjacent rain-fed plots of agricultural land; and socio-economic analysis of other environmental and social impacts of the irrigation scheme. Data were collected through a field survey of the selected irrigated and rain-fed farm plots, qualitative interviews with the farm owners and relevant secondary sources. The analyses find that the soils of the irrigated farms have been significantly degraded more than those of the rain-fed farms to the extent that precludes sustainable practice of arable agriculture on irrigated land in the study area. About 9% of the soils of the irrigated land have been degraded to the extent that they are no longer suitable for arable agriculture. Analyses of the qualitative interviews also find other bio-physical, social and economic impacts that significantly constrain long-term sustainability of arable agriculture in the study area.  相似文献   

7.
ABSTRACT: Pressure is increasing in the western United States to reallocate water from irrigated agriculture to other competitive uses. Since water is normally allocated through water rights and not necessarily by the price system, the question of economic efficiency is a continual concern. Study results show that returns per acre-foot of water used in western irrigation are quite high and are closely tied to the livestock industry. Returns per acre-foot of water used for crops ranged from $60 to $1,500. When water was used to support livestock, returns per acre-foot ranged from $100 to $600. Clearly, losses of water supply that reduced irrigation production could also lower farm income significantly. Estimated returns also show what alternative uses would have to pay for water under competitive market conditions. Production elasticities are also shown for various states.  相似文献   

8.
ABSTRACT: Climate change has the potential to have dramatic effects on the agricultural sector nationally and internationally as documented in many research papers. This paper reports on research that was focused on a specific crop growing area to demonstrate how farm managers might respond to climate-induced yield changes and the implications of these responses for agricultural water use. The Hadley model was used to generate climate scenarios for important agricultural areas of Georgia in 2030 and 2090. Linked crop response models indicated generally positive yield changes, as increased temperatures were associated with increased precipitation and CO2. Using a farm management model, differences in climate-induced yield impacts among crops led to changes in crop mix and associated water use; non-irrigated cropland received greater benefit since irrigated land was already receiving adequate moisture. Model results suggest that farm managers will increase cropping intensity by decreasing fallowing and increasing double cropping; corn acreage decreased dramatically, peanuts decreased moderately and cotton and winter wheat increased. Water use on currently irrigated cropland fell. The potential for increased water use through conversion of agriculturally important, but currently non-irrigated, growing areas is substantial.  相似文献   

9.
Much of Sub‐Saharan Africa is burdened with water scarcity and poverty. Continentally, less than four percent of Africa's renewable water resources are withdrawn for agriculture and other uses. Investments in agricultural water management can contribute in several ways to achieving the Millennium Development Goals of eradicating extreme poverty and hunger and ensuring environmental sustainability. Increased yield and cropping area and shifts to higher valued crops could help boost the income of rural households, generate more employment, and lower consumer food prices. These investments can also stabilize output, income and employment, and have favourable impacts on education, nutrition and health, and social equity. Investments in agricultural water management can cut poverty by uplifting the entitlements and transforming the opportunity structure for the poor. The overall role of investments in agricultural water management in eradicating hunger and poverty is analyzed. This paper contributes to the present debate and efforts to identify strategies and interventions that can effectively contribute to poverty reduction in Africa. It provides an overview of population growth, malnutrition, income distribution and poverty for countries in three case study river basins — Limpopo, Nile, and Volta. With discussions on the contribution of agriculture to national income and employment generation, the paper explores the linkages among water resources investments, agricultural growth, employment, and poverty alleviation. It examines the potential for expansion in irrigation for vertical and horizontal growth in agricultural productivity, via gains in yield and cropping area to boost the agricultural output. Factors constraining such potential, in terms of scarcity and degradation of land and water resources, and poor governance and weak institutions, are also outlined. The paper argues that increased investments in land and water resources and related rural infrastructure are a key pathway to enhance agricultural productivity and to catalyze agricultural and economic growth for effective poverty alleviation.  相似文献   

10.
Increasing demand for global food production is leading to greater use of irrigation to supplement rainfall and enable more intensive use of land. Minimizing adverse impacts of this intensification on surface water and groundwater resources is of critical importance for the achievement of sustainable land use. In this paper we examine the linkages between irrigation runoff and resulting changes in quality of receiving surface waters and groundwaters in Australia and New Zealand. Case studies are used to illustrate impacts under different irrigation techniques (notably flood and sprinkler systems) and land uses, particularly where irrigation has led to intensification of land use. For flood irrigation, changes in surface water contaminant concentrations are directly influenced by the amount of runoff, and the intensity and kind of land use. Mitigation for flood irrigation is best achieved by optimizing irrigation efficiency. For sprinkler irrigation, leaching to groundwater is the main transport path for contaminants, notably nitrate. Mitigation measures for sprinkler irrigation should take into account irrigation efficiency and the proximity of intensive land uses to sensitive waters. Relating contaminant concentrations in receiving groundwaters to their dominant causes is often complicated by uncertainty about the subsurface flow paths and the possible pollutant sources, viz. drainage from irrigated land. This highlights the need for identification of the patterns and dynamics of surface and subsurface waters to identify such sources of contaminants and minimize their impacts on the receiving environments.  相似文献   

11.
ABSTRACT: The on-farm economic effectiveness of government capital grants, subsidized interest rates, and the Canadian Wheat Board (CWB) delivery quota levels in terms of adoption and/or expansion of irrigation in Saskatchewan is tested. The annualized net income at 5 and 20 years of three representative farm types - a dryland grain farm, an irrigated grain farm, and an irrigated mixed farm - are used in the analysis. Tradeoffs between income levels and the risks associated with adoption/expansion of irrigation are evaluated using mean-standard deviation tradeoff and stochastic dominance. Risk differences arise due to reduced business risk through higher yields and increased financial risk through higher borrowing when adopting or expanding irrigation. Capital grants and subsidized interest rates are effective policy measures for dryland grain farms adopting irrigation because the farms are left in a similar risk position. However, these grants and interest rates are not effective policy measures in the medium run (5 years) for irrigated grain farms expanding irrigation because they lower the farm's risk efficiency. In the long run (20 years), the capital grants and subsidized interest rates need to be combined with open CWB delivery quotas before the risk position can be improved for irrigated grain farms expanding irrigation. Finally, the grants and interest rates need to be combined with increased irrigated hay production for risk efficiency to increase in both the medium and long run (5 and 20 years, respectively) on irrigated mixed farms expanding irrigation.  相似文献   

12.
In different parts of the world, there is an urgent need for redesigning and innovating farming systems. Such a process may be supported by model-based explorations that enable ex-ante evaluation of a broad range of alternatives. Since a variety of viable patterns of farm development exists related to farm resource endowment and farmer's strategy, model-based explorations should be able to capture the existing variation in resource endowment and strategies in order to have impact on strategic farm management. In this paper, we present an overview of the model-based explorative method based on the MILP model Farm Images, applied to explore options for sustainable development of vegetable farms in Canelón Grande, Uruguay. The method is used to gain insight into the impact of current farm resource endowment on the possibilities for sustainable development and on the resource use efficiency at farm scale. We maximized farm income for 128 different farm types in an environment-oriented scenario and in an income-oriented scenario. Farm types were defined by combining 4 farm sizes, 2 labor endowments, 4 irrigation endowments, 2 soil quality combinations and 2 mechanization levels. The results demonstrate a strong impact of farm resource endowment on possibilities for sustainable development, as well as synergy between labor, land and irrigated area on resource-use efficiency at farm scale. Farms with 10ha of land or less, representing 47% of the farms in the Canelón Grande region, could only achieve a family income higher than the average income of Uruguayan families when the irrigated area was ca. 40% of the farm area. The achievement of environmental targets was less costly in terms of income on farms with a low rather than high labor availability per unit area and on farms with irrigation facilities.  相似文献   

13.
Studies of irrigation drainage in the Western United States have documented some of the effects of irrigating land without first understanding and then considering implications from the interdependent relationships of hydrology, geology, geochemistry, biology, climatology, land use and socio-economic issues. In studies completed in 26 areas, selenium is the trace element found most often at elevated concentrations in water, bottom material and biota. Boron, arsenic, mercury and pesticide residues have also been found at elevated levels in some areas. Bioaccumulation of constituents associated with irrigation drainage is common. As the world experiences an explosive population growth, particularly in poorer countries, demands for food production from marginal, submarginal and newly irrigated soils are likely to cause severe adverse environmental impacts from allocation of limited water resources and contamination from irrigation drainwater. Cultivated marginal land is highly susceptible to degradation from soil erosion, salinization and waterlogging, not withstanding release of contaminants from application of irrigation water.  相似文献   

14.
ABSTRACT: Rapid population growth in the metropolitan area of Denver, Colorado, is causing conflicts over water use. Two cities, Thomton and Westminster, have begun condemnation proceedings against three irrigation companies to secure agricultural water rights for municipal use. This is the first condemnation proceeding against irrigation water rights for municipal use. Should the suit succeed, over 30,000 acres of presently irrigated land will lose its water supply. There are about four hundred landowners in the area; two hundred of these are commercial farmers, including truck, dairy and specialty farms. Total agricultural production amounts to about $8 million per year. About 561 jobs related to agriculture will disappear along with about $4 million in not income. Only 6.4 percent of the farmland along the Front Range is irrigated. Continued urban growth will put pressure on the water supply of much of this land. The interested parties of the region should cooperate to lessen the impact of urban growth on agricultural lands and water by forming a metropolitan water district. Such a district could share costs of development of additional municipal water and develop systems where municipalities would recycle waste water back to the irrigated lands.  相似文献   

15.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

16.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   

17.
18.
Regional agricultural projects based on water resource development have many potential impacts on social and natural environments. In this research, potential long-term environmental problems of the Southeastern Anatolian Project (GAP) related to water resources, land use, land degradation, agricultural pollution and demography are analysed from a systems perspective. The analysis focuses on the totality of environmental, social and economic issues. For this purpose, a system dynamics simulation model (GAPSIM) has been developed as an experimental platform for policy analysis. GAPSIM was validated, first 'structurally', using the tests suggested by the literature and then the model 'behaviour' was tested and calibrated with respect to available data. The reference behaviour of GAPSIM reveals that, as the irrigated lands are developed, GAP faces significant water scarcity because of the increased intensity of cotton, the crop with the highest demands for water. Simulation results also indicate that two key environmental factors, pesticide and fertilizer consumption may reach undesirable levels. Alternative irrigation water release strategies, development rates of irrigated fields and farm rotation practices appear as important policy tools in achieving long-term environmental sustainability. GAPSIM promises to be not only a useful laboratory for policy makers of GAP, but also a useful generic structure applicable to other similar regional development projects.  相似文献   

19.
ABSTRACT: Public investments in water resource development projects are continually under scrutiny in terms of economic, environmental, and social impacts. Results of an analysis of a water development project that supplies irrigation water in Idaho are discussed in terms of the impact on income distribution and income growth 44 to 64 years after the project was initiated. Gini ratios for the rural farm population of these counties were consistently lower than they were for the United States as a whole and for the state of Idaho. In addition, income distributions tended to become more equitable over time in the water project counties. Rural farm population income growth rates were found to be similar to those for the nation as a whole. Some of the reasons for these results may be related to the tendency for income distribution to become more equitable as income increases, and the fact that average farm size is relatively small.  相似文献   

20.
中国北方15个省、区、市耕地面积占全国的55%,灌溉面积占全国灌溉总面积的48%,而水资源总量仅占全国的20%。区域水资源短缺和农业的进一步发展,要求提高农业用水有效性。本文从水文学角度,研究了华北、西北和东北3个地区水土资源特征;分析了作物熟制和适水种植的节水效益、农田供水量与产量的函数关系、农田棵间蒸发量和控制措施,以及提高高产农田用水有效性等水文试验研究结果;介绍了河北省南皮节水农业试验区的研究模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号