首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT: Air temperatures are sometimes used as easy substitutes for stream temperatures. To examine the errors associated with this substitution, linear relationships between 39 Minnesota stream water temperature records and associated air temperature records were analyzed. From the lumped data set (38,082 daily data pairs), equations were derived for daily, weekly, monthly, and annual mean temperatures. Standard deviations between all measured and predicted water temperatures were 3.5°C (daily), 2.6°C (weekly), 1.9°C (monthly), and 1.3°C (annual). Separate analyses for each stream gaging station gave substantially lower standard deviations. Weather monitoring stations were, on average, 37.5 km from the stream. The measured water temperatures follow the annual air temperature cycle closely. No time lags were taken into account, and periods of ice cover were excluded from the analysis. If atmospheric CO2 doubles in the future, air temperatures in Minnesota are projected (CCC GCM) to rise by 4.3°C in the warm season (April-October). This would translate into an average 4.1°C stream temperature rise, provided that stream shading would remain unaltered.  相似文献   

2.
ABSTRACT: Records of hourly water temperatures for two streams in the Upper Mississippi River basin were used to find the error between instantaneous measurements of stream water temperatures and true daily averages. The instantaneous summer water temperature measurements were assumed to be collected during daylight hours, and measurement times were selected randomly. The absolute error at the 95 percent confidence level of randomly collected stream water temperatures was less than 0.9°C for a 1 to 5m deep large river, but as large as 3.6°C for a 0.3 to lm deep small stream. Temperature readings of morning samples were usually below daily average values, and afternoon readings were usually above. Daily mean water temperatures were obtained with less than 0.23°C standard deviation from true daily averages if the daily maximum and minimum water temperatures were averaged. Sample results were obtained for the open water (summer) season only, since diurnal water temperature fluctuations in ice covered streams are usually negligible.  相似文献   

3.
Emitted thermal infrared radiation (TIR, λ= 8 to 14 μm) can be used to measure surface water temperatures (top approximately 100 μm). This study evaluates the accuracy of stream (50 to 500 m wide) and lake (300 to 5,000 m wide) radiant temperatures (15 to 22°C) derived from airborne (MASTER, 5 to 15 m) and satellite (ASTER 90 m, Landsat ETM+ 60 m) TIR images. Applied atmospheric compensations changed water temperatures by ?0.2 to +2.0°C. Atmospheric compensation depended primarily on atmospheric water vapor and temperature, sensor viewing geometry, and water temperature. Agreement between multiple TIR bands (MASTER ‐ 10 bands, ASTER ‐ 5 bands) provided an independent check on recovered temperatures. Compensations improved agreement between image and in situ surface temperatures (from 2.0 to 1.1°C average deviation); however, compensations did not improve agreement between river image temperatures and loggers installed at the stream bed (from 0.6 to 1.6°C average deviation). Analysis of field temperatures suggests that vertical thermal stratification may have caused a systematic difference between instream gage temperatures and corrected image temperatures. As a result, agreement between image temperatures and instream temperatures did not imply that accurate TIR temperatures were recovered. Based on these analyses, practical accuracies for corrected TIR lake and stream surface temperatures are around 1°C.  相似文献   

4.
In this study, we demonstrate a physically based semi-Lagrangian water temperature model known as the River Basin Model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrological model and Weather Research & Forecasting Model in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data available from six river gages located in the MRB. Further sensitivity analysis indicates that the mean water temperatures may increase by 1.3, 1.5, and 1.8°C in northern, central, and southern MRB zones under a hypothetical uniform air temperature increase of 3.0°C. If air temperatures increase uniformly by 6.0°C in this scenario, then water temperatures are projected to increase by 3.3, 3.5, and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1.0 to 8.0°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. In addition, increased water temperatures interact with nutrient loadings from sources throughout the MRB, which is expected to exacerbate harmful algal blooms and dead zones in the Gulf of Mexico.  相似文献   

5.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

6.
ABSTRACT: Air temperatures are sometimes used as substitutes for stream temperatures. To examine the errors associated with this procedure, linear relationships between stream temperatures, T, and air temperatures, Ta, recorded for 11 streams in the central U.S. (Mississippi River basin) were analyzed. Weather stations were an average 42 miles (range 0 to 144 miles) from the rivers. The general equations, Tw= 5.0 + 0.75 Ta and Tw= 2.9 + 0.86 Ta with temperatures in °C, were derived for daily and weekly water temperatures, respectively, for the 11 streams studied. The simulations had a standard deviation between measurements and predictions of 2.7°C (daily) and 2.1°C (weekly). Equations derived for each specific stream individually gave lower standard deviations, i.e., 2.1°C and 1.4°C, respectively. Small, shallow streams had smaller deviations than large, deep rivers. The measured water temperatures follow the air temperatures closely with some time lag. time lags ranged from hours to days, increasing with stream depth. Taking into account these time lags improved the daily temperature predictions slightly. Periods of ice cover were excluded from the analysis.  相似文献   

7.
One central issue affecting the health of native fish species in the Pacific Northwest is water temperature. In situ observation methods monitor point temperatures, while thermal infrared (TIR) remote sensing captures spatial variations. Satellite‐based TIR sensors have the ability to view large regions in an instant. Four Pacific Northwest river reaches were selected to test the ability of both satellite‐based and moderate resolution aircraft‐based TIR remote sensing products to measure river temperatures. Images with resolutions of 5, 15, and 90 meters were compared with instream temperature observations to assess how along stream radiant temperatures are affected by resolution, reach width, and sensor platform. Where the stream reach can be resolved by the sensor, all sensors obtain water temperatures within ±2°C of instream observations. Along stream temperature variations of up to ±5°C were also observed. Trends were similar between two sets of TIR images taken several hours apart, indicating that the sensors are observing actual temperature patterns from the river surface. If sensor resolution is sufficient to obtain fully resolved water pixels in the river reach, accurate temperatures and spatial patterns can be observed. The current generation of satellite‐based TIR sensors is, however, only able to resolve about 6 percent of all Washington reaches listed as thermally impaired.  相似文献   

8.
Simulations of stream temperatures showed a wide range of future thermal regimes under a warming climate — from 2.9°C warmer to 7.6°C cooler than current conditions — depending primarily on shade from riparian vegetation. We used the stream temperature model, Heat Source, to analyze a 37‐km study segment of the upper Middle Fork John Day River, located in northeast Oregon, USA. We developed alternative future scenarios based on downscaled projections from climate change models and the composition and structure of native riparian forests. We examined 36 scenarios combining future changes in air temperature (ΔTair = 0°C, +2°C, and +4°C), stream discharge (ΔQ = ?30%, 0%, and +30%), and riparian vegetation (post‐wildfire with 7% shade, current vegetation with 19% shade, a young‐open forest with 34% shade, and a mature riparian forest with 79% effective shade). Shade from riparian vegetation had the largest influence on stream temperatures, changing the seven‐day average daily maximum temperature (7DADM) from +1°C to ?7°C. In comparison, the 7DADM increased by 1.4°C with a 4°C increase in air temperature and by 0.7°C with a 30% change in discharge. Many streams throughout the interior western United States have been altered in ways that have substantially reduced shade. The effect of restoring shade could result in future stream temperatures that are colder than today, even under a warmer climate with substantially lower late‐summer streamflow.  相似文献   

9.
Abstract: Runoff from parking lots during summer storms injects surges of hot water into receiving water bodies. We present temperature data collected near urban storm sewer outfalls in Blacksburg, Virginia, using arrays of sensors in a stream and a stormwater pond. Surges occurred roughly a dozen times per month, ranging up to 8.1°C with average duration 2 h in the stream and up to 11.2°C with average duration 7 h in the pond. Surges were larger in the pond due to a larger contributing watershed, no dilution by upstream water, and cool background temperatures near the outfall. Surges began abruptly, warming at rates averaging 0.2°C/min for periods of 5‐20 min. Surges dissipated as they propagated into the water bodies, travelling further in the stream (>19 m) than the pond (~10 m) consistent with greater advection in the stream. Surges were largest and most frequent in the afternoon but occurred at all times of day and night. Stream surges exhibited two phases: an early high‐temperature low‐volume input from the storm sewer and a later low‐temperature high‐volume input from upstream. Surges at the pond did not exhibit two phases, consistent with inputs only from storm sewers. Surges are likely common in urban areas, and may cumulatively have consequences for aquatic organisms, biogeochemical process rates, and even human health. Such effects may be compounded by urban heat islands and climate change, so prevention or mitigation should be considered.  相似文献   

10.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

11.
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.  相似文献   

12.
Leaving riparian strips on both sides of a stream is widely accepted to be an effective management approach in sustaining the valuable functions of stream and riparian ecosystems. The authors' overall objective is to provide microclimatic information for assessing the effectiveness of these strips. During the summer of 1993 and 1994, air temperatures were collected across 20 small, buffered streams in western Washington, USA, including five streams sampled before and after harvesting of the forest. These data were statistically analysed to examine the effects of adjacent harvesting with preservation of 16–72 m riparian forest strips. Regression models were developed to predict air temperatures at the stream and buffer edges, the difference between two locations, and seasonal changes. The authors found: (1) clearcutting in winter 1993/94 increased air temperature on the stream by up to 4°C, and changes in temperature variability from the stream to the upland, measured by coefficient of variation (CV), were significantly higher after harvesting; (2) forest buffers provided minimal protection for stream air temperature during the middle of summer (July) but were more effective early and late in the season; (3) buffer width was not a significant variable in predicting stream air temperature, suggesting that even a 72 m buffer was not sufficient to maintain a stream environment because of greater depth of edge influences.1998 Academic Press  相似文献   

13.
ABSTRACT: Removal of streamside vegetation changes the energy balance of a stream, and hence its temperature. A common approach to mitigating the effects of logging on stream temperature is to require establishment of buffer zones along stream corridors. A simple energy balance model is described for prediction of stream temperature in forested headwater watersheds that allows evaluation of the performance of such measures. The model is designed for application to “worst case” or maximum annual stream temperature, under low flow conditions with maximum annual solar radiation and air temperature. Low flows are estimated via a regional regression equation with independent variables readily accessible from GIS databases. Testing of the energy balance model was performed using field data for mostly forested basins on both the west and east slopes of the Cascade Mountains, and was then evaluated using the regional equations for low flow and observed maximum reach temperatures in three different east slope Cascades catchments. A series of sensitivity analyses showed that increasing the buffer width beyond 30 meters did not significantly decrease stream temperatures, and that other vegetation parameters such as leaf area index, average tree height, and to a lesser extent streamside vegetation buffer width, more strongly affected maximum stream temperatures.  相似文献   

14.
ABSTRACT: The well field serving the Lyons Ferry Fish Hatchery has experienced reduced water temperatures following continued, periodic withdrawal of large volumes of water. In January 1985, the well field temperature was 49°F, which is less than the optimal 52°F for raising salmon and steelhead trout. The aquifer supplying the hatchery is in hydraulic and thermal connection with the Snake River and a flooded embayment of the Palouse River. Ground-water temperatures in the well field cycle on an annual basis in response to changes in surface water temperature and pumping rate. Numerical simulation of the well field, using a simplified mixing cell model, demonstrates the coupling of well field hydraulics and aquifer thermal response. Alternative pumping schedules indicate that it is feasible to adjust ground-water pumping to effectively store heat in the aquifer during the summer months when surface water temperatures are elevated. Sensitivity analysis of this model indicated that the primary controls of the system's thermal response are the volume of the aquifer assumed to contribute to the well field and temperature of the overlying surface water body.  相似文献   

15.
DeWalle, David R., 2010. Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width. Journal of the American Water Resources Association (JAWRA) 46(2):323-333. DOI: 10.1111/j.1752-1688.2010.00423.x Abstract: A theoretical model was developed to explore impacts of varying buffer zone characteristics on shading of small streams using a path-length form of Beer’s law to represent the transmission of direct beam solar radiation through vegetation. Impacts of varying buffer zone height, width, and radiation extinction coefficients (surrogate for buffer density) on shading were determined for E-W and N-S stream azimuths in infinitely long stream sections at 40°N on the summer solstice. Increases in buffer width produced little additional shading beyond buffer widths of 6-7 m for E-W streams due to shifts in solar beam pathway from the sides to the tops of the buffers. Buffers on the north bank of E-W streams produced 30% of daily shade, while the south-bank buffer produced 70% of total daily shade. For N-S streams an optimum buffer width was less-clearly defined, but a buffer width of about 18-20 m produced about 85-90% of total predicted shade. The model results supported past field studies showing buffer widths of 9-11 m were sufficient for stream temperature control. Regardless of stream azimuth, increases in buffer height and extinction coefficient (buffer density) were found to substantially increase shading up to the maximum tree height and stand density likely encountered in the field. Model results suggest that at least 80% shade on small streams up to 6-m wide can be achieved in mid-latitudes with relatively narrow 12-m wide buffers, regardless of stream azimuth, as long as buffers are tall (≈30 m) and dense (leaf area index ≈6). Although wide buffers may be preferred to provide other benefits, results suggest that increasing buffer widths beyond about 12 m will have a limited effect on stream shade at mid-latitudes and that greater emphasis should be placed on the creation of dense, tall buffers to maximize stream shading.  相似文献   

16.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

17.
ABSTRACT: A loafing or sacrifice lot is an area located outside of the free stall barn, where a dairy herd spends several hours per day. Sacrifice lots are usually denuded of vegetation and have high concentrations of manure and urine that can contribute significant amounts of sediment, nutrients, and pathogens to nearby surface waters. In this study, stream water quality impacted by direct runoff from a sacrifice lot was monitored for a period of 20 months. Ambient stream water quality was monitored by grab sampling upstream and downstream of the sacrifice lot. During runoff events, stream water quality downstream of the sacrifice lot was monitored with an automatic sampler. Laboratory analyses were conducted for total suspended solids and nutrients (nitrogen and phosphorus compounds). A grass filter strip (GFS) was installed as a buffer downslope of the sacrifice lot 10 months into the study period. The impact of the buffer strip on the standardized pollutant concentrations and loads was evaluated using the non-parametric Wilcoxon test. The Wilcoxon test indicated that there was no significant difference (α= 0.05) in the standardized yield of sediment and dissolved pollutants before and after the GFS installation, except for phosphate-phosphorus and filtered total phosphorus concentrations, and sediment-bound total phosphorus and total kjeldahl nitrogen loads that decreased significantly. However, load decrease could have been partially caused by the smaller rainfall volumes after the GFS installation as compared to the existing condition.  相似文献   

18.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

19.
EEG's and skin temperature measurements were made on six men and six women while sleeping in environments whose temperatures were 10·0°C, 21·1°C, and 32·2°C. Analysis of the EEG recordings showed that the proportion of time in each sleep stage was not affected by the temperature of the sleep environment. The weighted mean skin temperatures of the subjects were similar for the 10·0°C and 21·1°C condition, with a mean of 34·5°C for the sleep period. The mean weighted skin temperature for the 32·2°C condition was 35·6°C. A questionnaire administered when the subjects had awakened showed that women did not sleep as well at 10·0°C as at the other temperatures, when sleeping in conventional bedding and clothing.  相似文献   

20.
ABSTRACT: Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号