首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

2.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

3.
ABSTRACT: The Grand and Saugeen Rivers in southern Ontario were chosen for study as pilot watersheds under the Pollution From Land Use Activities Reference Group (PLUARG) study. The pilot watersheds have adjacent headwater areas and are physically similar in geology, physiography, and climate. Significant differences in water quality between the watersheds at their outlets are attributed to land use and population differences. The major pollutant sources in the two pilot watersheds were identified as trace elements from urban runoff and point source discharges; phosphorus from agricultural and urban runoff and private waste disposal; chloride from transportation corridors; and sediment and nitrogen from agricultural runoff. Yields at the watershed outlets were similar for suspended sediment and two to three times as high in the Grand River for phosphours, nitrogen, chloride, and lead. The higher phosphorus and nitrogen levels were attributed to larger point source inputs and the higher proportion of agricultural activity, comprising 75 percent of the Grand River basin compared to 64 percent in the Saugeen River basin. Similarly, the higher chloride and lead levels were attributed to an order of magnitude larger population and three times as much urban land in the Grand River basin compared to the Saugeen River basin.  相似文献   

4.
Soil variability in watersheds accounts for the problem of partitioning downstream water quality data and evaluating sources of non-point pollution. This review of previous water quality studies was conducted to examine more closely the influence of soil properties on pollutant export. The approach used in this paper was to start with data from the two largest watersheds (Maumee and Sandusky) and then compare them on a unit area export basis with data from intermediate-size and smaller watersheds. General relationships between pollutant levels at the river mouth and upstream soil conditions are vague and seemingly contradictory at the large-watershed scale. With smaller watersheds, it can be determined that soil texture, slope, and internal drainage are controlling factors for pollutant export. Although Paulding (very-fine, illitic, nonacid, mesic Typic Epiaquept) and Roselms (very-fine, illitic, mesic Aeric Epiaqualf) soils occupy only 5% of the Maumee basin, they generate more than 10 times as much sediment per unit area as the tile-drained Hoytville (fine, illitic, mesic Mollic Epiaqualf) soils that occupy 16% of the Maumee basin. Tile drainage of very poorly drained soils that are formed from either glacial till or silty to sandy lake deposits reduces runoff and increases downward movement of soluble nutrients into tile drains. The assumption that sloping moraine areas are the primary source of pollutants should be reexamined based on this review.  相似文献   

5.
ABSTRACT: Non-point source pollution cuntinues to be an important environmental and water quality management problem. For the moat part, analysis of non-point source pollution in watersheds has depended on the use of distributed models to identify potential problem areas and to assess the effectiveness of alternative management practices. To effectively use these models for watershed water quality management, users depend on integrated geographic information systems (GIS)-based interfaces for input/output data management. However, existing interfaces are ad-hoc and the utility of GIS is limited to organization of input data and display of output data. A highly interactive water quality modeling interface that utilizes the functional components and analytical capability of GIS is highly desirable. This paper describes the tight coupling of the Agricultural Non-point Source (AGNPS) water quality model and ARC/INFO GIS software to provide an interactive hybrid modeling environment for evaluation of non-point source pollution in a watershed. The modeling environment is designed to generate AGNPS input parameters from user-specified GIS coverages, create AGNPS input data files, control AGNPS model simulations, and extract and organize AGNPS model output data for display. An example application involving the estimation of pesticide loading in a southern Iowa agricultural watershed demonstrates the capability of the modeling environment. Compared with traditional methods of watershed water quality modeling using the AGNPS model or other ad-hoc interfaces between a distributed model and GIS, the interactive modeling environment system is efficient and significantly reduces the task of watershed analysis using tightly coupled GIS databases and distributed models.  相似文献   

6.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

7.
In this work on the management of water quality in a river basin by means of multiobjective programming, the programming model consists of three objectives that include simultaneously both economic and environmental factors. These objectives are the water quality of the rivers, the cost of wastewater treatment and the assimilative capacity of the rivers. In particular, this research is the first to take into account the last objective. For practical application, this paper proposes two methods of multiobjective programming, the constraint method and the step method. Furthermore, to illustrate the application of these techniques to water quality management problems, we use the basin of Tzeng-Wen River, Taiwan, as a case study. The results show that these methods work satisfactorily to improve the water quality, to ascertain the economic cost of wastewater treatment, and to allocate allowable loading in a manner of equality from non-inferior solutions. Alternatively, these methods provide important information for regulatory agencies to implement pollution control of river water.  相似文献   

8.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.  相似文献   

9.
In the Mississippi River Basin (MRB), practices that enhance drainage (e.g., channelization, tile drainage) are necessary management tools in order to maintain optimal agricultural production in modern farming systems. However, these practices facilitate, and may speed the delivery of excess nutrients and sediments to downstream water bodies via agricultural streams and ditches. These nonpoint sources contribute to elevated nutrient loading in the Gulf of Mexico, which has been linked to widespread hypoxia and associated ecological and economic problems. Research suggests agricultural drainage ditches are important links between farm fields and downstream ecosystems, and application of new management practices may play an important role in the mitigation of water quality impairments from agricultural watersheds. In this article, we describe how researchers and producers in the MRB are implementing and validating novel best management practices (BMPs) that if used in tandem could provide producers with continued cropping success combined with improved environmental protection. We discuss three BMPs — low‐grade weirs, slotted inlet pipes, and the two‐stage ditch. While these new BMPs have improved the quality of water leaving agricultural landscapes, they have been validated solely in isolation, at opposite ends of the MRB. These BMPs have similar function and would greatly benefit from stacked incorporation across the MRB to the benefit of the basin as a whole.  相似文献   

10.
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992–2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.  相似文献   

11.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

12.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

13.
Planners advocate best management practices (BMPs) to reduce loss of sediment and nutrients in agricultural areas. However, the scientific community lacks tools that use readily available data to investigate the relationships between BMPs and their spatial locations and water quality. In rural, humid regions where runoff is associated with saturation-excess processes from variable source areas (VSAs), BMPs are potentially most effective when they are located in areas that produce the majority of the runoff. Thus, two critical elements necessary to predict the water quality impact of BMPs include correct identification of VSAs and accurate predictions of nutrient reduction due to particular BMPs. The objective of this research was to determine the effectiveness of BMPs using the Variable Source Loading Function (VSLF) model, which captures the spatial and temporal evolutions of VSAs in the landscape. Data from a long-term monitoring campaign on a 164-ha farm in the New York City source watersheds in the Catskills Mountains of New York state were used to evaluate the effectiveness of a range of BMPs. The data spanned an 11-year period over which a suite of BMPs, including a nutrient management plan, riparian buffers, filter strips and fencing, was installed to reduce phosphorus (P) loading. Despite its simplicity, VSLF predicted the spatial distribution of runoff producing areas well. Dissolved P reductions were simulated well by using calibrated reduction factors for various BMPs in the VSLF model. Total P losses decreased only after cattle crossings were installed in the creek. The results demonstrated that BMPs, when sited with respect to VSAs, reduce P loss from agricultural watersheds, providing useful information for targeted water quality management.  相似文献   

14.
ABSTRACT: This paper examines the relationship between best-management practices, institutional needs, and improved water quality within the watersheds of Wisconsin's program for controlling rural nonpoint source pollution. The first section describes the federal requirements for state nonpoint source programs and the legislative and management methods the state of Wisconsin uses to put those requirements into practice. The emphasis of the paper, described in the second section, is the institutional difficulty in evaluating the success of a large, integrated water quality program. Measurements which are investigated include (1) watershed water quality before and after implementation of BMPs; (2) program participation as measured by eligible vs. participating landowners, BMPs considered necessary vs. BMPs implemented, or dollars allocated to the NPS program vs. dollars expended; and (3) institutional goal coordination and management effectiveness. It is found that, despite the size and sophistication of Wisconsin's NPS program, there is little if any improvement in ambient water quality in these watersheds, probably because of a general lack of adequate participation in this voluntary program.  相似文献   

15.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

16.
Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient‐enriched floodplain soils could pose a long‐term source of sediment and nutrients to downstream rivers.  相似文献   

17.
ABSTRACT: Existing land use data were used to estimate nonpoint source phosphorus loads to Lake Champlain (Vermont/New York/Quebec) in a loading function model that combined P concentration coefficients with regional hydrologic data. The estimates were verified against monitored loading data, then used to assess the relative magnitudes of contributions from major land uses and regions of the Lake Champlain Basin. The Basin is comprised of 62 percent forest, 28 percent agricultural land, 3 percent urban land, and 7 percent water. The best-fit model estimated an annual total P load of 457 mt/year, which did not differ significantly from the 458 metric tons/year measured for an average hydrologic year, and accurately predicted loads from major tributaries. Agriculture contributes 66 percent of the annual nonpoint source P load to Lake Champlain; urban and forest land contribute 18 percent and 16 percent, respectively. Because agricultural land contributes most nonpoint source P to Lake Champlain, load reduction effort must deal with agricultural sources. However, because the urban 3 percent of the basin contributes 18 percent of the estimated load, high load reduction efficiencies might be achieved by addressing urban sources. This assessment clearly demonstrated the relationship between land use and P loads in the Lake Champlain Basin, a prerequisite for policy-makers to endorse a P management strategy requiring changes in land use and management.  相似文献   

18.
LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT1   总被引:4,自引:0,他引:4  
ABSTRACT: A conceptual, continuous time model called SWAT (Soil and Water Assessment Tool) was developed to assist water resource managers in assessing the impact of management on water supplies and nonpoint source pollution in watersheds and large river basins. The model is currently being utilized in several large area projects by EPA, NOAA, NRCS and others to estimate the off-site impacts of climate and management on water use, non-point source loadings, and pesticide contamination. Model development, operation, limitations, and assumptions are discussed and components of the model are described. In Part II, a GIS input/output interface is presented along with model validation on three basins within the Upper Trinity basin in Texas.  相似文献   

19.
ABSTRACT: Farmers can generate environmental benefits (improved water quality and fisheries and wildlife habitat), but they may not be able to quantify them. Furthermore, farmers may reduce their incomes from managing lands to produce these positive externalities but receive little monetary compensation in return. This study simulated the relationship between agricultural practices, water quality, fish responses to suspended sediment and farm income within two small watersheds, one of a cool water stream and one of a warm water stream. Using the Agricultural Drainage and Pesticide Transport (ADAPT) model, this study related best management practices (BMPs) to calculated instream suspended sediment concentrations by estimating sediment delivery, runoff, base flow, and streambank erosion to quantify the effects of suspended sediment exposure on fish communities. By implementing selected BMPs in each watershed, annual net farm income declined $18,000 to $28,000 (1 to 3 percent) from previous levels. “Lethal” fish events from suspended sediments in the cool water watershed decreased by 60 percent as conservation tillage and riparian buffers increased. Despite reducing suspended sediments by 25 percent, BMPs in the warm water watershed did not reduce the negative response of the fisheries. Differences in responses (physical and biological) between watersheds highlight potential gains in economic efficiency by targeting BMPs or by offering performance based “green payments.”  相似文献   

20.
Abstract: Wastewater impact on drinking water sources was assessed using several approaches, including analysis of three pharmaceuticals and personal care products (PPCPs) – primidone, carbamazepine, and caffeine – as indicators, and determination of precursor concentrations for the disinfection byproduct N‐nitrosodimethylamine (NDMA) using formation potential (FP) tests. Samples were collected in 2006 and 2007 in rivers impacted by wastewater treatment plant (WWTP) discharges, at drinking water treatment plant (DWTP) intakes upstream or downstream from these discharges, and from two WWTP effluents in two watersheds. The levels [10th percentile ? maximum (median)] of primidone, carbamazepine, caffeine, and NDMAFP were 2‐95 (7) ng/l, 2‐207 (18) ng/l, 7‐687 (78) ng/l, and 12‐321 (35) ng/l, respectively. The highest concentrations of primidone, carbamazepine, and NDMA precursors were from one of the WWTP effluents, whereas the highest concentration of caffeine was detected in a river heavily impacted by treated wastewater discharges. The lowest concentrations of the three PPCPs were from a DWTP influent upstream of a metropolitan urban area with minimum wastewater impact. Temporal variations in PPCP and NDMAFP concentrations and streamflows in two selected watersheds were also observed. Furthermore, correlation analysis between caffeine or carbamazepine and primidone was evaluated. The results show that measurement of the two pharmaceuticals and NDMAFP tests can be used to evaluate wastewater impact in different watersheds, whereas caffeine results were more variable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号