首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Precipitation and runoff samples were collected for 13 storms in a nonindustrial urban area in Central Pennsylvania between July 1980 and June 1981. Runoff was collected from tree surfaces, a residential roof and street, a shopping mall parking lot, a downtown business district alley, and a heavily traveled street. Analysis of the water samples showed 10 to 25 percent of the nitrogen, 25 percent of the sulfate, and less than 5 percent of the phosphorus, potassium, and calcium in water below a tree was deposited by the precipitation. The residential roof caused insignificant changes in water chemistry. The results for the four paved areas showed that all the nitrogen, and from 16 to 40 percent of the sulfate and 13, 4, and 2 percent of the phosphorus, potassium, and calcium, respectively, in runoff was deposited by the precipitation. Precipitation can also be an important source of sulfate and phosphorus in runoff. All of the surfaces raised the pH of the runoff, with the largest increases, from a pH of 4 to about 7, occurring in runoff from the paved areas. Precipitation and runoff chemistry was not related to antecedent conditions such as the length of the preceding dry period.  相似文献   

2.
ABSTRACT: Storm water runoff studies of three small basins (20, 40, and 58 acres) in the Fort Lauderdale area of Florida were conducted by the U.S. Geological Survey in 1974–78. The basins were homogeneously developed with land uses being: commercial, single family residential, and high traffic volume highway. Synchronized data were collected for rainfall, storm water discharge, storm water quality, and bulk precipitation (rainfall plus dry fallout) quality. Analysis of the storm water discharge data showed that most runoff was from impervious areas hydraulically connected to drain inlets. Regression analyses of the storm water discharge and water quality data indicated that storm loads from the single family residential area correlated strongly with peak discharge and length of antecedent dry periods. Storm loads from the highway area correlated strongly with rainfall and less strongly with peak discharge and antecedent dry periods. Storm loads from the commercial area correlated strongly with peak discharge and rainfall, and less strongly with antecedent dry periods. On a unit area basis, the single family residential area yielded the largest loads of nitrogen, phosphorus, and dissolved solids. The commercial area yielded the largest loads of lead, zinc, and chemical oxygen demand. Yields of carbon were about the same for the three areas. Constituent loadings derived directly from the atmosphere were estimated on the basis of bulk precipitation samples and compared with storm runoff loads from the highway and commercial areas.  相似文献   

3.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

4.
ABSTRACT: Conditions under which monthly rainfall forecasts translate into monthly runoff predictions that could support water resources planning and management activities were investigated on a small watershed in central Oklahoma. Runoff response to rainfall forecasts was simulated using the hydrologic model SWAT. Eighteen scenarios were examined that represented combinations of wet, average, and dry antecedent rainfall conditions, with wet, normal, and dry forecasted rainfall. Results suggest that for the climatic and physiographic conditions under consideration, rainfall forecasts could offer potential application opportunities in surface water resources but only under certain conditions. Pronounced wet and dry antecedent rainfall conditions were shown to have greater impact on runoff than forecasts, particularly in the first month of a forecast period. Large forecast impacts on runoff occurred under wet antecedent conditions, when the fraction of forecasted rainfall contributing to runoff was greatest. Under dry antecedent conditions, most of the forecasted rainfall was absorbed in the soil profile, with little immediate runoff response. Persistent three‐month forecasts produced stronger impacts on runoff than one‐month forecasts due to cumulative effects in the hydrologic system. Runoff response to antecedent conditions and forecasts suggest a highly asymmetric utility function for rainfall forecasts, with greatest decision‐support potential for persistent wet forecasts under wet antecedent conditions when the forecast signal is least dampened by soil‐storage effects. Under average and dry antecedent conditions, rainfall forecasts showed little potential value for practical applications in surface water resources assessments.  相似文献   

5.
Abstract: It is common practice in the United States and elsewhere to maintain vegetated filter strips adjacent to streams to retain contaminants in surface runoff. Most research has evaluated contaminant retention in managed agricultural field strips, while relatively few studies have quantified retention in forested filter strips, particularly for dissolved contaminants. Plot‐scale overland flow experiments were conducted to evaluate the efficiency of natural forested filter strips established as streamside management zones (SMZs) for retaining phosphorus (P), atrazine, and picloram transported in runoff. Retention was evaluated for five different slope classes: 1‐2, 5‐7, 10‐12, 15‐17, and 20‐22%; two cover conditions: undisturbed forest floor (O horizon intact) and forest floor removed by raking; and two periods with contrasting soil moisture conditions: summer‐dry and winter‐wet season. Surface flow was collected at 0, 2, 4, 6, and 10 m within the filter strip to evaluate changes in solution concentration as it moved through the O horizon and the surface soil horizon mixing zone. On average, a 10 m length of forested SMZ with an undisturbed forest floor reduced initial solution concentration of total dissolved P by 51%, orthophosphate P by 49%, atrazine by 28%, and picloram by 5%. Percentages of mass retention through infiltration of water plus concentration reductions in runoff were 64% for total dissolved P, 62% for orthophosphate P, 47% for atrazine, and 28% for picloram for undisturbed forest floor conditions. Lower retention occurred following forest floor removal, particularly for P. Average dissolved P retention was 16% lower following forest floor removal. For undisturbed sites, differences in retention were more closely related to forest floor depth than to slope or antecedent soil moisture. These results indicate that forested SMZ filter strips provide a significant measure of surface water protection from dissolved P and herbicide delivery to surface water.  相似文献   

6.
Use of small plots and rainfall simulators to extrapolate trends in runoff water quality requires careful consideration of hydrologic process represented under such conditions. A modified version of the National Phosphorus Runoff Project (NPRP) protocol was used to assess the hydrology of paired 1 x 2 m plots established on two soils with contrasting hydrologic properties (somewhat poorly drained vs. well drained). Rain simulations (60 mm h(-1)) were conducted to generate 30 min of runoff. For the somewhat poorly drained soil, simulations were conducted in October and May to contrast dry conditions typically targeted by NPRP protocols with wet conditions generally associated with natural runoff. For the well-drained soil, only dry conditions (October) were evaluated. Under dry antecedent moisture conditions, an average of 64 mm of rainfall was applied to the somewhat poorly drained soil to generate 30 min of runoff, as opposed to 96 mm to the well-drained soil. At an extreme, differences in rainfall were equivalent to a 50-yr rainfall-return period. An absence of detectable spatial trends in surface soil moisture suggests uniformity of runoff processes within the plots. No differences in applied rainfall were evident between wet and dry antecedent conditions for the somewhat poorly drained soil. However, significant differences in runoff generation processes were observed in dissolved P concentrations between wet and dry conditions. As natural runoff from the somewhat poorly drained soil is largely under wet antecedent conditions, this study highlights the need for care in interpreting findings from generalized protocols that favor infiltration-excess runoff mechanisms.  相似文献   

7.
ABSTRACT: Peachtree Creek is a gaged watershed that has experienced a substantial increase in urbanization. The relationships of runoff to rainfall were studied for total annual flows, low flows, and peak flows. For each type of flow the relationship in the later, more urbanized period was compared to that in the earlier, less urbanized period. An increase in total runoff in wet years was observed as urbanization increased, but a decrease occurred during dry years. For low flows a similar decrease of runoff in dry years was found. An increase in peak runoff was observed over most of the range of precipitation. Increasing peak flows and declining low flows can be adequately explained by urban hydrologic theoryshed. which focuses on the effects of urban impervious surfaces upon direct runoff and infiltration. However, a decline of total runoff in dry years can be explained only by taking into account evapotranspiration as well. The concept of advectively assisted urban evapotranspiration, previously discovered by climatologists, is needed to explain such a loss of total runoff. Urban hydrologic theory must take into account vegetation and evapotranspiration, as well as impervious surfaces and their direct runoff, to explain the magnitude of total annual flows and low flows. Urban stormwater management should address the restoration of low flows, as well as the control of floods.  相似文献   

8.
ABSTRACT A synthetic storm rainfall hyetograph for a one-year design frequency is derived from the one-year intensity-duration curve developed for Cincinnati, Ohio. Detailed rainfall data for a three-year period were collected from three raingages triangulating the Bloody Run Sewer Watershed, an urban drainage areas of 2380 acres'in Cincinnati, Ohio. The advancement of the synthetic storm pattern is obtained from an analysis of the antecedent precipitation immediately preceding the maximum period of three selected durations. Rains which produced excessive runoff at least for some duration were considered only. The same approach can be used for other design frequencies. The purpose of this study is to provide synthetic storm hyetographs to be used as input in deterministic mathematical models simulating urban storm water runoff for the design, analysis and possible surcharge prediction of sewer systems.  相似文献   

9.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

10.
ABSTRACT: The effect of flow persistence on seasonal patterns of watershed runoff was modeled by using runoff of the immediate antecedent month as an index. Monthly runoff was expressed as a function of monthly rainfall, season of the year, and runoff of the antecedent month. The three independent variables were expressed functionally as sliding polynomials, thus producing a piece-wise, form-free, three-dimensional causative structure. A model form allowing complete interactivity of the three independent variables could not be optimized because of insufficient data with high values of both antecedent runoff and monthly rainfall. A model with reduced interactivity was successfully optimized. Data sets from five watersheds ranging from 0.14 to 398 square miles were analyzed. Results were presented as a series of contour maps that showed contours of monthly runoff in the data space of season and monthly rain. In the series of maps, the patterns of the runoff contours changed with changing values of antecedent runoff. During the wet season of the year the contours changed significantly with antecedent runoff, but changes in the dry season were minimal. The quantitative change of runoff was more readily portrayed with cross-sections through the contoured surfaces.  相似文献   

11.
陈西平  梁荫 《四川环境》1993,12(4):69-72
本文在涪陵地区大面积和定点采集了农田径流水样品,测定了径流水体中的三氮含量。探讨了径流水体三氮随产流时间的变化,分析了干旱时间,水体流动等因素对三氮含量的影响。结果表明,干旱时间,径流水体流动对三氮含量有一定的影响。经统计分析,涪陵地区农田径流水体中的NH3-N,NO3^--N,NO2^--N和T-N含量分别为0.840,0.970,0.107和2.07mg/l。  相似文献   

12.
ABSTRACT: Grazing can have a profound impact on infiltration and thus runoff and erosion. The objectives of this study were to quantify the effects of select grazing systems on rainfall and snowmelt induced runoff and sediment yield from sloped areas of the foothills fescue grasslands of Alberta, Canada. The effects of two grazing intensities (heavy and very heavy) for two durations (short duration and continuous throughout the growing season) were compared to an ungrazed control between June 1988 and April 1991. Runoff was measured using 1-rn2 runoff frames and collection bucket systems. Sediment yields were then determined on samples from the collected runoff. Snowmelt was the dominant source of runoff. Snowmelt runoff was higher from the heavily grazed areas than from the very heavily grazed areas, due to the higher standing vegetation which accumulated snow in the former areas. Sediment yields as a result of snowmelt were generally low in all areas. Only a few summer storms caused runoff. Runoff volumes and sediment yields from summer rainstorms were low, due to low rainfall and to generally dry antecedent soil moisture conditions. The greatest risk of summer runoff, and thus sediment yield, appears to occur in August.  相似文献   

13.
ABSTRACT: The spatial distribution and the temporal and spatial variation of the annual, seasonal, and monthly precipitation in two mountainous watersheds in southwestern British Columbia, Canada, have been analyzed using a detailed database for 1971–1990 in the Capilano and Seymour watersheds. The analysis showed that the precipitation increases up to the mid-position of the watersheds, and then either levels off or decreases. Precipitation on mountain slopes and in the valley at the same distance from the beginning of the slope is similar, and the barrier height is identified as the dominant parameter which influences the precipitation distribution. The temporal variation of the precipitation is the smallest at the mid-position of the watersheds. This variability is the least in the fall and winter and largest in the summer. Correlation between the precipitation accumulations at various stations is large, ranging from 0.80 for the wet period of October-March to 0.65 for the dry period of April-September for distances less than 32 km. Comparison with other studies and the analyses of precipitation and runoff data from coastal British Columbia showed that the results of this study are perhaps general and thus transferable to similar areas in the coastal Pacific Northwest.  相似文献   

14.
This study was performed to identify the transport pathways of pesticides from a sloped litchi ( Sonn.) orchard to a nearby stream based on a three-component hydrograph separation (baseflow, interflow, surface runoff). Dissolved silica and electrical conductivity were chosen as representative tracers. During the study period (30 d), 0.4 and 0.01% of the applied mass of atrazine and chlorpyrifos, respectively, were detected in the stream after 151 mm of rainfall. Baseflow (80-96%) was the dominant hydrological flow component, followed by interflow (3-18%) and surface runoff (1-7%). Despite its small contribution to total discharge, surface runoff was the dominant atrazine transport pathway during the first days after application because pesticide concentrations in the surface runoff flow component declined quickly within several days. Preferential transport with interflow became the dominant pathway of atrazine. Because chlorpyrifos was detected in the stream water only twice, it was not included in the hydrograph separation. A feature of the surface runoff pathway was the coincidence of pesticide and discharge peaks. In contrast, peak concentrations of pesticides transported by interflow occurred during the hydrograph recession phases. Stormflow generation and pesticide transport depended on antecedent rainfall. The combination of high-resolution pesticide concentration measurements with a three-component hydrograph separation has been shown to be a suitable method to identify pesticide transport pathways under tropical conditions.  相似文献   

15.
ABSTRACT: A computer model was developed, based on the Green-Ampt infiltration equation, to computed rainfall excess for a single precipitation event. The model requires an estimate of parameters related to hydraulic conductivity, wetting front section, and fillable porosity of the soil layers. Values of parameters were estimated from soil textural averages or regression equations based on percent sand, percent clay, and porosity. Average values of effective porosity and wetting front suction were largely acceptable due to the relatively low variability and low model sensitivity to the parameters. Hydraulic conductivity was the most erratic constituent of the loss rate computation due to the high variability and the high sensitivity of the computed infiltration to the parameter. The performance of the Green-Ampt infiltration model was tested through a comparison with the SCS curve number procedure. Seven watersheds and 23 storms with precipitation of one inch or greater were used in the comparison. For storms with less than one inch of rainfall excess, the SCS curve number procedure generally gave the best results; however, for six of the seven storms with precipitation excess greater than one inch, the Green-Ampt procedure delivered better results. In this comparison, both procedures used the same initial abstractions. The separation of rainfall losses into infiltration, interception, and surface retention is, in theory, an accurate method of estimating precipitation excess. In the second phase of the study using nine watersheds and 39 storms, interception and surface retention losses were computed by the Horton equations. Green-Ampt and interception parameters were estimated from value sin the literature, while the surface retention parameter was calibrated so that the computed runoff volumes matched observed volumes. A relationship was found between the surface retention storage capacity and the 15-day antecedent precipitation index, month of year, and precipitation amount.  相似文献   

16.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

17.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

18.
Abstract: A numerical model has been developed to simulate the hydraulic and heat transfer properties of a stormwater detention pond, as part of a simulation tool to evaluate thermal pollution of coldwater streams from stormwater runoff. The model is dynamic (unsteady) and based on principles of fluid mechanics and heat transfer. It is driven by hourly weather data, and specified inflow rates and temperatures. To calibrate and validate the pond model field data were collected on a commercial site in Woodbury, Minnesota. The relationship between pond inflow and outflow rates to precipitation was effectively calibrated using continuously recorded pond levels. Algorithms developed for surface heat transfer in lakes were found to be applicable to the pond with some modification, resulting in agreement of simulated and observed pond surface temperature within 1.0°C root mean square error. The use of an unshaded pond for thermal mitigation of runoff from paved surfaces was evaluated using the pond model combined with simulated runoff from an asphalt parking lot for six years of observed rainfall events. On average, pond outflow temperature was 1.2°C higher than inflow temperature, but with significant event‐to‐event variation. On average, the pond added heat energy to runoff from an asphalt parking lot. Although the pond added total heat energy to runoff, it did reduce the rate of heat outflow from the pond by an order of magnitude due to reductions in volumetric outflow rate compared with the inflow rate. By reducing the rate of heat flow, the magnitude of temperature impacts in a receiving stream were also reduced, but the duration of impacts was increased.  相似文献   

19.
ABSTRACT: The application of hydrologic models to small watersheds of mild topography is not well documented. This study evaluates the applicability of hydrologic models described by Huggins and the Soil Conservation Service to small watersheds by comparing the simulated and actual hydrograph for both gaged and ungaged situations. The annual maximum rainfall events plus storms exceeding 2.5 inches from 25 years of rainfall and runoff data for two small watersheds were selected for the model evaluations. These storms had a variety of patterns and occurred on many different watershed conditions. Simulated and actual hydrographs were compared using a parameter which contained volume, peak, and shape factors. One-half of the selected storms were used to calibrate the models. For both models, there were no significant differences between the simulated and actual runoff volumes and peak runoff rates. Parameters obtained during the calibration process and relationships developed to estimate antecedent moisture and to modify tabulated runoff curve numbers were used to simulate the runoff hydrograph from the remaining storms. These remaining storms or test storms were simulated only once in order to imitate an ungaged situation. In general, both the Huggins and SCS model performed similarly on the test storms, but the level of model performance was lower than that for the calibration storms. For both models, the two-day antecedent rainfall was more important than the five-day in determining antecedent moisture and modifying tabulated curve numbers. The time of concentration which resulted in good hydrograph simulations was about three times larger than that estimated using published empirical relationships.  相似文献   

20.
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号