首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
制药废水有机污染物浓度高,处理难度大。为了提高废水的预处理效率,我们采用催化铁碳微电解强化预处理制药废水。试验结果表明:针对该废水,铜离子有明显催化效果;外加直流电源也有助于提高处理效率。实验条件:p H=3.5,铜离子浓度为50mg/L,外加直流电源电压为10V时,反应2h,COD去除率能达到41.8%。  相似文献   

2.
铁碳微电解降解高浓度制药废水   总被引:7,自引:1,他引:7  
采用铁碳微电解法对高浓度制药废水进行降解实验研究,考察了铁碳微电解反应时间、铁碳体积比、进水pH值、固液比等因素对降解效果的影响。结果表明,铁碳微电解反应时间为100 min,铁碳体积比为1:1,进水pH值为4.0,固液比为15%时,CODcr去除率接近60%,色度去除率超过80%,BOD5/CODcr也由原水的不足0.10上升到0.43,可生化性得到提高。同时也考察了铁屑活化对降解效果的影响。  相似文献   

3.
铁碳微电解预处理制药废水的实验研究   总被引:3,自引:0,他引:3  
采用铁碳微电解的方法对高浓度的制药废水进行预处理,考察了反应时间、铁碳比、pH值因素对处理效果的影响。结果表明,反应时间为100min,铁碳体积比为1:1,pH为4时,效果最佳,CODcr的去除率可达到50.52%,同时BOD5/CODcr也由原水的不足0.1上升到0.32,可生化性得到提高。  相似文献   

4.
采用铁碳微电解对红霉素医药废水生化二沉池出水进行深度处理。结果表明:最佳的铁碳微电解填料为PotenICME05,最佳反应初始pH为3.02,投加量为100 g/L,曝气量为60 L/h,曝气反应为90 min。在此条件下,废水COD、浊度和色度去除率分别为78.36%、90.23%和95.0%;BOD5/COD由初始0.095提高到0.367,可生化性得到显著改善。出水水质可以达到GB 21903—2008《发酵类制药工业水污染物排放标准》。  相似文献   

5.
针对传统铁碳微电解装置存在的偏流、堵塞、填料板结等问题,对装置结构进行了优化改进,采用催化微电解填料对硝基苯废水进行预处理。在装置内部增加挡圈防止设备偏流,增设废水内循环工艺以防止设备堵塞,改变填料的结构以防止设备板结,并采用催化微电解填料提高反应速率。在此基础上,研究了催化填料类型、进水浓度、反应时间及pH值对微电解反应过程的影响,以探索硝基苯预处理的显著影响因素和最佳条件。结果表明:采用含铜催化剂,硝基苯的质量浓度为30 mg/L,反应时间为60 min,pH为3. 0时,反应达到最佳状态,出水能够达到GB 8978—1996《污水综合排放标准》,且设备运行稳定可靠。  相似文献   

6.
某电镀厂中间水池废水(RO-NF浓水出水)Ni主要以络合态化合物形式存在,普通碱沉效果不佳。试验采用铁碳微电解-Fenton氧化破络碱沉处理,曝气30 min,出水Ni基本达到排放标准,成功实现工程调试。  相似文献   

7.
铁碳微电解预处理高浓度酒精废液   总被引:3,自引:0,他引:3  
采用废铁屑-焦碳组成微电解工艺预处理高浓度酒精废液。通过正交试验和单因素分析试验考察了反应时间、铁碳比、曝气强度对铁碳微电解工艺降解有机物,提高废水可生化性和pH的影响,最终确定了最佳反应条件。试验结果表明,反应时间、铁碳比和曝气强度对铁碳微电解处理酒精废液的影响程度依次降低,且最佳反应条件为反应时间2小时,铁水比125:500,曝气强度4m^3/m^2h,CODcr的去除率达到50%,废水的BOD5/CODcr值可由O.3提升到0.48,pH由3.5提高到5.2左右。作为高浓度酒精废液预处理工艺,铁碳微电解能够经济、有效降低后续处理工艺的负荷,提高废水的可生化性和碱度。  相似文献   

8.
针对传统铁碳微电解装置存在的偏流、堵塞、填料板结等问题,提出了相应的解决方法及措施,对装置结构进行优化改进,并进行了现场中试实验。通过在装置内部增加挡圈防止设备偏流,增设废水内循环工艺防止设备堵塞,改变填料的结构防止设备板结。采用改进型铁碳微电解设备处理青岛某电镀废水,稳定运行120 d出水平均值ρ(Cr6+)为0.03 mg/L,ρ(Cr)为0.04 mg/L,ρ(Zn~(2+))为0.12 mg/L,ρ(Cu~(2+))为0.67 mg/L,达到了GB 21900—2008《电镀废水排放标准》的要求,且设备运行稳定可靠。  相似文献   

9.
铁碳微电解法预处理染料废水的研究   总被引:1,自引:0,他引:1  
采用铁碳微电解法对颜料的实际生产废水进行降解研究。结果表明,pH值为3,铁碳比为1:2,反应时间120 min,曝气的条件下,染料废水的处理效果最好,色度去除达到80%以上,COD的去除率也超过50%以上,可生化性由0.21提高到0.43。  相似文献   

10.
铁碳微电解处理硝基苯废水的实验研究   总被引:2,自引:0,他引:2  
张楠  何文双 《环境科学与管理》2010,35(4):100-101,106
文章以硝基苯废水为研究对象,设计了正交实验,影响铁碳填料修复效果的参数主要有pH值、停留时间、Fe/C比,实验结果表明pH值和停留时间为显著因素,Fe/C比较为显著,并得出最佳条件。通过本实验确定的显著因素和最佳条件为硝基苯废水的处理提供了有力的理论支持和科学依据。  相似文献   

11.
酚水及煤气化废水的湿式氧化处理   总被引:11,自引:0,他引:11  
在二升高压釜中研究了酚水(3540mg酚/L、9278mgCOD/L)和煤气化废水(7866mg酚/L、22928mgCOD/L)的湿式氧化处理,反应温度控制在180—250℃,氧分压为9.8×10~5—34.3×10~5Pa。煤气化废水在温度为190—250℃、氧分压为9.8×10~5Pa,反应90min酚去除60—90%及COD降低35—55%。 酚水和煤气化废水的表观动力学研究表现出快速及慢速反应段,反应速率与COD值呈一次方关系,当温度一定时,反应速率与氧分压为0.25级关系,影响程度明显低于温度。  相似文献   

12.
采用内置铁炭微电解协同UASB-SBR联合工艺处理某厂实际印染废水。研究结果表明:分别采用市售和自制铁炭协同UASB-SBR联合工艺,SBR出水ρ(COD)稳定在100 mg/L左右,色度<40倍;使用自制铁炭微电解材料对SBR出水进行深度处理,最终出水COD及色度分别达50 mg/L及10倍以下。  相似文献   

13.
汤成莉  常青  延卫 《环境工程》2012,(Z2):59-63
采用铁炭微电解技术为核心工艺的混凝-铁炭微电解-强化电解组合工艺对大蒜切片废水进行处理,主要研究了铁炭微电解的运行参数,包括曝气与否、废水pH值、反应时间、铁炭质量比、铁水质量比对COD去除效果的影响。结果表明:经过组合工艺处理后,废水刺鼻的气味完全消除,浊度去除率达100%,ρ(COD)值由13050mg/L降至878mg/L,去除率达93.3%,BOD5/COD(B/C)值由0.10提高到0.46,废水的可生化性显著提高。  相似文献   

14.
针对糠醛废水pH低、有机物含量高、污染物成分复杂难降解等特点,采用微电解-UASB组合工艺处理糠醛废水。试验结果表明:后续UASB法产生颗粒污泥后,在进水ρ(COD)超过5 000 mg/L,pH值为5左右时,废水去除率稳定在80.5%以上,出水pH值为7,表明该工艺具有良好的应用前景。  相似文献   

15.
对德士古煤气化废水的产生及水质特性进行了分析,废水首先经蒸氨,将氨氮浓度从1300~2700 mg/L降低至200~300 mg/L,后续处理采用具有生物脱氮功能的处理工艺.对A/O、SBR及其改良工艺进行了综合评述,重点介绍了碟式射流曝气在改良SBR工艺中的应用,及该工艺的运行周期设置和特点.工程实践表明,该工艺处理效果好、运行稳定、操作及控制灵活,氨氮去除率达到98%,出水浓度小于10 mg/L.  相似文献   

16.
维生素B1制药废水的铁炭微电解-混凝预处理工艺   总被引:1,自引:0,他引:1  
针对维生素B1制药废水高有机物浓度、高悬浮物、色度高、难降解的特点,采用铁炭微电解-混凝工艺对其进行预处理,效果良好。铁炭微电解-混凝工艺的最佳运行条件为:进水pH值为4,铁炭比为1∶1,曝气量为0.2m3/h的情况下停留时间80min。出水CODCr浓度平均为1600mg/L,去除率约为79%,色度去除率为85%,出水达到了(GB8978-1996)二级排放标准。  相似文献   

17.
对高有机磷废水采用铁炭微电解-光催化氧化-生化工艺进行处理,经过8个月调试,污水处理系统运行稳定,处理效果好。进水平均ρ(COD)=12 890 mg/L、ρ(BOD5)=3 472 mg/L、ρ(NH3-N)=118 mg/L、ρ(TP)=664 mg/L,出水平均ρ(COD)=96 mg/L、ρ(BOD5)=19 mg/L、ρ(NH3-N)=13 mg/L、ρ(TP)=0.45 mg/L,达到了GB 8978—1996《污水综合排放标准》一级标准。  相似文献   

18.
微电解-生化组合工艺处理氯丁橡胶生产废水   总被引:1,自引:1,他引:1  
采用微电解-水解-厌氧-好氧生化新工艺对氯丁橡胶有机废水进行中试,结果表明,在中试稳定运行时,废水COD总去除率可达97.6%,出水COD平均浓度在300mg/L以下。  相似文献   

19.
北方某地煤气化炉渣炭含量为21.7%。以2号油为起泡剂,煤油作为捕收剂,通过"一粗一精"的浮选流程,获得了产率为16.12%、含炭量达88.92%、回收率为66.05%、发热量为6 569.2 cal/g的精炭,该精炭具有较大的比表面积和孔隙率。甲基橙模拟染色废水吸附处理实验结果表明:吸附剂添加量为2‰、模拟废水初始浓度为60 mg/L、处理时间为60 min的条件下,该精炭对废水中甲基橙的去除率为97.90%(此条件下商品活性炭的去除率为100%);甲基橙的吸附过程更加符合准二级动力学方程,相关性达到99.95%;采用Langmuir等温吸附模型对精炭的吸附效果拟合较好;在相同的处理条件下,要达到相同的处理效果,精炭的添加量为商品活性炭的1.28倍即可。因此,作为染色废水处理剂,与商品活性炭相比,该精炭材料来源广、成本低,有很好的开发利用前景。  相似文献   

20.
用紫外分光光度法分析经粉煤灰处理后含油废水中的油样含量。考察了pH值,粉煤灰使用量,接触时间,废水中油样的初始浓度,温度等因素对粉煤灰除油率的影响。结果表明:用石油醚溶解的油样紫外光最佳吸收波长为272.5nm;中性条件下,粉煤灰对废水中的油样有较好的去除率;粉煤灰使用量增大、接触时间增加、温度升高有利于粉煤灰对油样的吸附去除;废水中油样含量越高,粉煤灰对其去除率越低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号