首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern Gulf of California (NGC) is one of the most dynamic and productive marine ecosystems in the world, yet knowledge about population connectivity and dispersal patterns is lacking for many of its resident species. Using nuclear and mitochondrial markers, we investigated the effects of open water, geographical distance and suitable habitat on patterns of genetic structure of Solenosteira macrospira, a benthic buccinid whelk with direct development. We collected samples in April 2004, 2005 and May 2007 from the upper NGC (31°34.39″N, 114°44.45″W). Phylogenetic analyses, hierarchical analyses of variance and Bayesian assignment tests substantiated a break between the east and west coasts. Genetic distance between population pairs increased with geographical distance, but only when assuming a U-shaped dispersal pathway over the open water of the NGC. Given S. macrospira’s association with rocky intertidal habitats, and its limited dispersal potential, we assumed that the geographical distribution of rocky habitat would play a significant role in genetic differentiation of S. macrospira. Nevertheless, populations separated by sand were more similar than populations separated by rocks. The influence of open water, geographical distance and suitable habitat (rocks vs. sand) also varied significantly across different genetic markers that presumably evolve at different rates. Specifically, the more rapidly evolving nuclear microsatellites suggested that physical transport processes strongly influence genetic differentiation on contemporary time scales, even in a species with direct benthic development. This underscores the strong, and potentially homogenizing, effect of present-day ocean circulation patterns in the NGC.  相似文献   

2.
Pelagic larval duration (PLD) is a commonly used proxy for dispersal potential in coral reef fishes. Here we examine the relationship between PLD, genetic structure and genetic variability in geographically widespread and ecological generalist species from one coral reef fish family (Pomacentridae) that differs in mean larval duration by more than a month. The genetic structure was estimated in eight species using a mitochondrial molecular marker (D-loop) and in a sub-set of five species using nuclear molecular markers (ISSRs). Estimates of genetic differentiation were similar among species with pelagic larvae, but differed between molecular markers. The mtDNA indicated no structure in all species except one, while the ISSR indicated some structure between the sampling locations in all species. We detected a relationship between PLD and genetic structure using both markers. These relationships, however, were caused by a single species, Acanthochromis polyacanthus, which differs from all the other species examined here in lacking a larval phase. With this species excluded, there was no relationship between PLD and genetic structure using either marker despite a range of PLDs of more than 20 days. Genetic diversities were generally high in all species and did not differ significantly among species and locations. Nucleotide diversity and total heterozygosity were negatively related to maximum PLD but again these relationships were caused by A. polyacanthus and disappeared when this species was excluded. These genetic patterns are consistent with moderate gene flow among well-connected locations and indicate that at this phylogenetic level (i.e., within family) the duration of the pelagic larval phase is unrelated to the patterns of genetic differentiation.  相似文献   

3.
A critical step in understanding how temperature will affect biodiversity in coastal ecosystems is to gain insight into how the tolerances, and ultimately survival, of early life history stages will influence the distribution and abundance of adults. We assessed the thermal tolerance of encapsulated veliger-stage larvae of a common dogwhelk, Nucella ostrina, that occur in the rocky intertidal zone on the west coast of North America. Results showed that veligers collected from northern latitudes in Washington State were less tolerant of heat stress than those from central sites in California. For all sites, we found there to be a subtle difference between the temperatures at which veligers first began to die compared to when veligers reached 100% mortality. On a biogeographic scale, the LT50 temperatures, a measure of larval sensitivity, for N. ostrina veligers displayed a strong latitudinal trend. These findings provide a conservative measurement of the upper thermal limits of encapsulated veligers while illustrating how these early life history stages could be physiologically compromised under future climate warming scenarios.  相似文献   

4.
Climate change influences populations by reducing or extirpating local populations, by disrupting patterns of migration and by shifting geographical distributions. These events can affect genetic population structure in several ways. Molecular markers have been used in numerous population genetic and phylogeographical studies of marine species and have detected population responses to climate change in the last few decades, such as range expansions, adaptative shifts and declines or increases in abundance. Little is known, however, about the molecular and physiological basis of adaptive responses to climate change in marine Mediterranean species. The Mediterranean Sea ecosystem is a ‘living laboratory’ with native species that are challenged by environmental change and by invasive species and a ‘gene-climate’ approach should be adopted as a way of focusing on the relationship between climate warming and genetic diversity.  相似文献   

5.
The philopatric larval dispesal and small effective population sizes characteristic of many clonal species should promote the development of significant small-scale genetic structure within populations as a result of isolation-by-distance. We used spatial autocorrelation statistics to detect genetic structure, arising from both clonal reproduction and philopatric dispersal of sexual propagules, for five allozyme loci within populations of the soft coral Alcyonium sp. In a population on Tatoosh Island, Washington, USA, sampled in 1991/1992, we found significant positive spatial autocorrelation at all loci among individuals separated by <40 cm, reflecting the presence of significant smallscale genetic structure due to associations among clonemates. For 4 of 5 loci, however, we detected no significant spatial autocorrelation among the different clones within this population over distances of 1 to 40 m. Analysis of soft-coral populations from six additional, topographically diverse sites in the north-east Pacific also did not reveal significant spatial autocorrelation among clones at any loci. This general lack of spatial autocorrelation of genotypes among clones suggests that significant small-scale genetic structure has not arisen in populations of Alcyonium sp. as a consequence of isolation-by-distance.  相似文献   

6.
Effects of dispersal and mating systems on the genetic structure of populations were evaluated by comparing five sea anemones: four Epiactis species that brood their offspring to the juvenile stage and one Anthopleura species that broadcasts gametes and has pelagic, planktotrophic larvae. The anemones were sampled at sites ranging from British Columbia to southern California between 1988 and 1992 and were analyzed by enzyme electrophoresis and by multilocus DNA-fingerprinting. Results were only partially consistent with expectations. While all four brooding species had lower observed heterozygosities than the broadcasting species, not all brooding species had greater population subdivision than the broadcasting species. The self-fertile E. prolifera had the expected evidence of intense local inbreeding ( f = 0.955); unexpectedly, the cross-fertile E. lisbethae and E. ritteri also had similar departures from random mating ( f = 0.957 and 0.831, respectively) probably due to biparental inbreeding among near neighbors in small, highly subdivided populations. Received: 24 May 1996 / Accepted: 12 July 1996  相似文献   

7.
The extent to which marine populations are “open” (panmixia) or “closed” (self-recruitment) remains a matter of much debate, with recent reports of high levels of genetic differentiation and self-recruitment among populations of numerous species separated by short geographic. However, the interpretation of patterns of gene flow (connectivity) is often based on a stepping stone model of dispersal that can genetically homogenise even distant populations and blur genetic patterns that may better reflect realised dispersal. One way in which realised long-distance dispersal can be accurately determined is by examination of gene flow of taxa between isolated archipelagos and a mainland where there is no possible stepping stone dispersal across the open ocean. We investigated the genetic structuring of populations of the intertidal gastropod Nerita melanotragus from the subtropical Kermadec Islands and temperate New Zealand’s North Island (the mainland), separated by 750 km of open ocean and characterised by contrasting environmental conditions. Analyses of seven microsatellite markers revealed an absence of genetic structuring with low F ST and Jost’s D values (from 0.000 to 0.007 and from 0.000 to 0.015, respectively) over large geographic distances and no evidence of isolation by distance among all populations. These results indicate that the realised dispersal of N. melanotragus is of at least 750 km, this species exhibits a very “open” form of connectivity and its larvae exhibit sufficient phenotypic plasticity to settle successfully in different environmental conditions, ranging from subtropical to cool temperate.  相似文献   

8.
Blue mussels representing two nominal species (Mytilus trossulus Gould, 1850 and Mytilus galloprovincialis Lamarck, 1819 were collected from 28 intertidal locations along the Pacific coast of the USA in 1990–1991 (total N=1255) and examined for variation at 15 allozyme loci. Twelve samples, mostly from a region of suspected hybridization, were analyzed for variation in seven shell characters. Principal-components analysis of allozyme data revealed three groups based on first principal-component scores, which were identified as M. trossulus, M. galloprovincialis, and hybrids. Canonical discriminant analysis of shell characters was less successful in separating mussels into discrete groups. Each location was characterized for four environmental variables: (1) temperature, (2) salinity, (3) tidal height and (4) degree of exposure to wave action, which were then used as independent variables in a series of multiple-regression analyses, with the proportions of the two species as dependent variables. Temperature and salinity had significant (P<0.05) effects on the macrogeographic distribution of the two species, whereas the effects of height in the tidal zone and degree of wave exposure were not statistically significant. Salinity was found to have a greater influence than temperature on the microgeographic distribution of the two species. M. trossulus was more abundant at locations with lower temperatures and greater salinity variation than M. galloprovincialis. The two species appear to be ecologically distinct, and their genetic integrity is at least partly the result of environmental heterogeneity.  相似文献   

9.
W. S. Grant  M. Lang 《Marine Biology》1991,109(3):479-483
We examined electrophoretic variation in the supralittoral gastropod,Nodilittorina africana knysnaensis, along the coast of South Africa in 1989. There was little allozyme variation in nine samples collected over 1 500 km for three highly polymorphic loci,Est, Gpi, andPgm, and Wahlund's effect was absent in the pooled sample. A gene diversity analysis showed that 98.1% of total genic diversity, on average, was contained within populations, and that only 1.9% was due to allozyme frequency differences among populations. Since the mode of larval development has not yet been described for this species, we suggest that the lack of strong allozyme frequency differences over long distances indicates thatN. a. knysnaensis has a planktonic mode of larval development.  相似文献   

10.
Littorina angulifera (Lamark) and Nerita senegalensis Gmelin, both intertidal gastropods, appear to have a preference for specific levels of the shore. In some experiments conducted both in the laboratory and in the field, displaced snails exhibited a general homing behaviour when displaced upshore or downshore. Cues involved in this migrational behaviour have not clearly been identified.  相似文献   

11.
Genetic analysis of the marine bryozoans Celleporella hyalina and Electra pilosa using the RAPD technique revealed population structuring corresponding to the contrasting modes of larval dispersal. Samples of C. hyalina exhibited genetic differentiation over distances as small as 10 m, concordant with the limited dispersal predicted by a simulation model, based on the short pelagic phase of the lecithotrophic larvae and the local hydrography. In contrast, E. pilosa showed high levels of genetic heterogeneity only over much larger spatial scales, commensurate with its production of comparatively long-lived planktotrophic larvae. The population differentiation observed between samples of E. pilosa, collected from sites 70 km apart, is reconcilable with coastal water currents and frontal systems that restrict the exchange of water masses between the two sites. Hydrographic conditions and discontinuous distribution of suitable substrata therefore are seen to constrain gene flow, creating opportunities for local genetic differentiation despite the high dispersal potential of pelagic larvae. Received: 9 August 2000 / Accepted: 18 November 2000  相似文献   

12.
K. E. Parsons 《Marine Biology》1996,126(3):403-414
The intertidal gastropods Bembicium vittatum and Austrocochlea constricta, which have direct and planktonic larval development, respectively, occur sympatrically at sites across a number of islands at the Houtman Abrolhos archipelago and two harbours at Albany in Western Australia. Their distribution provide an opportunity to examine the effect of dispersal ability on levels of genetic subdivision at a number of spatial scales. F ST (standardised variance in allelic frequencies) values in the range 0.361 to 0.396, determined from allozyme frequencies at 12 to 13 polymorphic loci, confirm isolation of Abrolhos and Albany populations, which are separated by 900 km of coastline, in both species. Within the Abrolhos and Albany, levels of subdivision in B. vittatum were high, but similar, as indicated by F ST values of 0.091 and 0.090, respectively. In A. constricta, a mean value of 0.160 at the Abrolhos suggests severe restrictions to gene flow, while 0.021 at Albany indicates much stronger connections among populations. F ST values at the Abrolhos support previous suggestions that this archipelago favours genetic subdivision in both direct and planktonic-developing species. The Albany harbours favoured subdivision only in B. vittatum, the low values of F ST in A. constricta being attributed to strong mixing between the harbours, thus facilitating gene flow via planktonic larvae. The isolation of A. constricta populations at the Abrolhos can be explained in terms of highly localised recruitment, the result of limited water movement in complex intertidal habitats. The study illustrates the value of examining sympatric direct and planktonic developers in assessing the role of larval dispersal in patterns of genetic subdivision, and concludes that planktonic larvae may not promote gene flow over broad or even some fine spatial scales.  相似文献   

13.
14.
Previous studies have suggested that the high diversity associated with the Norfolk seamounts (Southwest Pacific) could reflect endemism resulting from limited dispersal due to hydrological phenomena. Crustaceans of the family Galatheidae are thoroughly studied in the New Caledonia economic zone permitting the analysis of species distribution pattern between the New Caledonia slope and Norfolk ridge seamounts. This analysis has shown that, qualitatively, the same species are sampled on seamounts and on the New Caledonia slope. Local endemism was never detected. However, on each seamount, and therefore on a small surface, a very high number of species are usually sampled, suggesting that seamounts are biodiversity hot spots. Then, to evaluate whether the seamounts constitute patches of isolated habitat, we explore the pattern of genetic diversity within several species of crustaceans and gastropods. Analysis of the intra-specific genetic structure using the mitochondrial marker COI reveals that populations of two Galatheidae species (Munida thoe and Munida zebra), polymorphic for this marker, are genetically not structured, both among seamounts and between the seamounts and the island slope. The genetic structure over a similar sampling scheme of two Eumunida species (Chirostylidae, the sister family of Galatheidae) and a planktotrophic gastropod (Sassia remensa) reveals a similar pattern. Population structure is observed only in Nassaria problematica, a non-planktotrophic gastropod with limited larvae dispersal. Thus, the limitation of gene flow between seamounts appears to be observed only for species with limited dispersal abilities. Our results suggest that the Norfolk seamounts rather than functioning as areas of endemism, instead, may be highly productive zones that can support numerous species in small areas.  相似文献   

15.
Genetic surveys of reef fishes have revealed high population connectivity within ocean basins, consistent with the assumption that pelagic larvae disperse long distances by oceanic currents. However, several recent studies have demonstrated that larval retention and self-recruitment may be higher than previously expected. To assess connectivity in tropical reef fishes, we contribute range-wide mtDNA surveys of two Atlantic squirrelfishes (family Holocentridae). The blackbar soldierfish, Myripristis jacobus, has a pelagic juvenile phase of about 58 days, compared to about 71 days (~22% longer) in the longjaw squirrelfish, Holocentrus ascensionis. If the pelagic duration is guiding dispersal ability, M. jacobus should have greater population genetic structure than H. ascensionis. In comparisons of mtDNA cytochrome b sequences from 69 M. jacobus (744 bp) and 101 H. ascensionis (769 bp), both species exhibited a large number of closely related haplotypes (h=0.781 and 0.974, π=0.003 and 0.006, respectively), indicating late Pleistocene coalescence of mtDNA lineages. Contrary to the prediction based on pelagic duration, M. jacobus has much less population structure (φST=0.008, P=0.228) than H. ascensionisST=0.091, P<0.001). Significant population partitions in H. ascensionis were observed between eastern, central and western Atlantic, and between Brazil and the Caribbean in the western Atlantic. These results, in combination with the findings from 13 codistributed species, indicate that pelagic larval duration is a poor predictor of population genetic structure in Atlantic reef fishes. A key to understanding this disparity may be the evolutionary depth among corresponding taxonomic groups of “reef fishes”, which extends back to the mid-Cretaceous and encompasses enormous diversity in ecology and life history. We should not expect a simple relationship between pelagic larval duration and genetic connectivity, among lineages that diverged 50–100 million years ago.  相似文献   

16.
Two species of marine mussel, Mytilus edulis and M. galloprovincialis hybridize on the coasts of western Europe. Studies of hybrid mussel populations have shown that natural selection favors M. galloprovincialis-like genotypes within this hybrid zone. Many hypotheses have been proposed to explain differential mortality in these populations. This study tests two hypotheses addressing factors of mortality in a population, and describes yearly energy storage and reproductive cycles of these two species and their hybrids. No evidence was found that the two taxa have different overall levels of reproductive effort or parasite infestation. They do, however, have asynchronous spawning periods and divergent energy storage strategies. In the year of this study, 1993, the M. edulis genotypic class spawned as a group in June and July. After spawning, they built up a high level of mantle energy-storage tissues that are probably used for gametogenesis in the following winter and spring. The M. galloprovincialis genotypic group, however, spawned asynchronously, beginning in June and finishing by August, and did not build up high levels of energy-storage tissues in summer. These results add a temporal component to the interpretation of selective forces acting to shape this hybrid zone. Vulnerability of each species to mortality factors may differ because of their divergent reproductive and energy-storage cycles. Received: 15 January 1999 / Accepted: 26 July 2000  相似文献   

17.
Until the last decade it was assumed that most marine species have pronounced gene flow over vast areas, largely because of their potential for dispersal during early life stages. However, recent genetic, modeling, and field studies have shown that marine populations may be structured at scales that are inconsistent with extensive dispersal of eggs and larvae. Such findings have stimulated the birth of new studies explaining the mechanisms that promote population structure and isolation in the oceans, in the face of high potential for dispersal. Here we study the vertical and horizontal distribution of cod (Gadus morhua) eggs in relation to small-scale circulation and water column hydrography in a coastal location of southern Norway. Previous studies conducted in this region have shown that cod populations inhabiting fjord locations, which are on average 30 km apart, are genetically differentiated, a remarkable outcome considering that Atlantic cod have pelagic egg stages and long pelagic larval duration. We document that cod eggs are found in greater abundance in shallow water layers, which on average are flowing up the fjord (away from the open ocean), and in the inner portion of the fjord, which is subject to lower current speeds compared to the outer or mouth of the fjord. Eggs were found to be neutrally buoyant at shallow depths, a trait that also favors local retention, given the local circulation. The same patterns held during two environmentally contrasting years. These results strongly suggest that population structure of Atlantic cod is favored and maintained by a balance between water circulation and egg characteristics.  相似文献   

18.
In benthic invertebrates dispersal of planktotrophic larvae is generally considered more effective than is, for example, the rafting of adults or egg masses. It is certainly true that over short distances, viz., in the range of tens of kilometres or less, a moderately long-lived planktotrophic larva represents an effective mechanism of dispersal. However, turbulent mixing and mortality will decrease the concentration of planktotrophic larvae, and at some distance from the ancestral population the density of settlers may be too low to enable future matings between adults of low mobility. On the other hand, adults, juveniles or benthic egg masses drifted over long distances may colonize new habitats. The crucial point is the type of larval development of the organism. If the founder group belongs to a species with direct development or which produces very short-lived planktonic larvae, the low mobility of all life-stages will maintain a population within a restricted area so that mates will be likely to encounter each other even in a small population. Even if transport of benthic stages happens very rarely, this may be more influential than larval dispersal over long distances. To show that this may be true the detailed geographical distribution of two intertidal gastropod species with contrasting modes of development is presented and further support from the literature for this hypothesis is discussed.  相似文献   

19.
This study aims at describing the diversity and composition of larval and juvenile fish assemblages in coastal areas of New Caledonia, southwest Pacific, and identifying the environmental factors that influence the seasonal and spatial patterns of these assemblages. A total of 97 taxa belonging to 7 orders and 26 familis were captured in three bays near Nouméa by light trapping every month between January 2002 and June 2003. The assemblages were dominated by Clupeiform larvae and juveniles (96.4% of total abundance) and followed by Perciform larvae (3%). The number of taxa per sample varied from less than five in July–August to more than ten in October–November and abundances followed the same seasonal pattern. Analyses of similarity showed significant differences in the assemblages caught in the three bays and analyses of contribution to the dissimilarity revealed that these differences were due to the most abundant families. The constant part of the relationship between environmental variables and the composition of assemblages was assessed by the partial triadic analysis STATICO, a statistical approach that takes into account the strong seasonality of the data. Rainfall, wind direction and thermal stratification of the water column were found to play a major role in the structure of the assemblages, although tidal amplitude and wind speed became important when Clupeidae and Engraulididae were excluded from the analyses. The richness, relative abundances and seasonal variations of the assemblages caught in three bays under study are close to what has been observed elsewhere in the tropics. This study shows the efficiency of the STATICO analysis for identifying the environmental factors that have a permanent effect on assemblages and sorting them out from those which act temporally or on specific locations. The high abundances and diversity of coral-reef fish larvae observed in coastal zones of New Caledonia suggest that further studies are needed to fully explore the role of the coastal zones of New Caledonia as nurseries.  相似文献   

20.
Cultures of developing larvae of Gibbula cineraria (L.) were obtained from adults spawning in the laboratory, and these cultures were reared to settlement of the larvae at 9 days. Dispersal of the outer jelly coat of the egg appeared to be delayed in the presence of spermatozoa. Early cleavage followed the typical spiral pattern, and gastrulation was by epiboly. The trochophore larvae hatched at about 28 h, before shell-formation began. The first 90° of torsion was completed between 48 and 56 h. The second part of torsion was completed within 4 days, and preliminary attempts to retract into the shell were made at 76h. After 96 h, although torsion was complete, the larvae were still unable to retract fully into the shell. The larvae remained in a stage of swimming-attempted creeping until the 4th or 5th day after torsion was complete, but were unable to pull the shell upright until the end of this time. Throughout this stage, the velum was reduced and was finally shed. The animals all died after metamorphosis, which occurred at about 9 days, when the larval shell comprised 1 1/2 whorls, with a breadth of 250 to 300m. Settlement appeared to be passive, i.e., governed by wave action and tides. In the light of these observations, theories concerning torsion are reappraised. The advantage to the larva of torsion is not clear, as the larvae are not able to retract into the shell until after metamorphosis, yet it is clear from previous authors' observations that the first part of torsion in most gastropods involves only larval structures. This makes it difficult to suggest that torsion is entirely of advantage to the adult snails. It is thus proposed that the two components of torsion may have evolved independently. The first, relatively rapid component of torsion, resulting in 90° of displacement of the mantle cavity in relation to the visceral mass, may be of advantage to the swimming larva. The final, slower component of torsion may be of advantage to the newly-metamorphosed benthic snail, and is the only component of torsion found in those gastropods which have no free-swimming larva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号