首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
杨庆娟  王淑莹  刘莹  袁志国  葛翀 《环境科学》2008,29(8):2249-2253
以实际生活污水为对象,研究了反硝化聚磷菌(DPB)的驯化培养以及A2N双污泥反硝化除磷系统的快速启动.采用先独立培养反硝化聚磷菌和好氧硝化生物膜再连续运行的方式成功地快速启动了A2N系统.采用污水处理厂除磷工艺中的活性污泥为种泥,在SBR系统中以先A/O(厌氧,好氧)后A/A(厌氧,缺氧)的方式运行.32 d成功地使反硝化聚磷菌成为优势菌属.在SBR反应器中,采用硝化效果较好的活性污泥为种泥,好氧硝化生物膜30 d挂膜成功.氨氮去除率稳定在99%以上.然后.A2N系统连续运行,11d后系统反硝化除磷效果进入稳定状态,出水氨氮和正磷酸盐浓度均为O,硝态氮为10.26 mg/L,出水COD为19.56 mg/L,COD、氨氮、总氮和磷去除率分别为91%、100%、77%和100%,说明A:N系统具有很好的脱氮除磷效果,认为系统启动成功.  相似文献   

2.
SBR后置缺氧反硝化除磷的启动及去除性能   总被引:1,自引:0,他引:1  
为实现对氮磷的高效同步去除,采用将缺氧后置的SBR工艺,以生活污水为处理对象,考察反硝化除磷工艺的启动与运行效果.结果表明,先通过短污泥龄(SRT)驯化富集聚磷菌(PAOs),再延长污泥龄并引入缺氧段,39d即可实现反硝化除磷工艺的启动,COD、TP、NH4+-N、TN去除率分别为92.9%、98.4%、100%和87.6%.进水COD与TN比(C/N)对系统氮磷去除有一定影响:C/N短暂的降低幅度不超过17.65%时,氮磷去除效率并没有明显变化;当超过33.3%时,脱氮除磷性能下降,但伴随着运行时间的延长,出水COD浓度减少,反硝化除磷菌(DPAOs)在PAOs比例也会提升,这在一定程度上弥补了DPAOs反硝化脱氮效率的下降.周期实验表明,pH值与DO可以作为厌氧释磷结束与周期结束的实时控制参数,大大缩短反应时间,降低曝气能耗.  相似文献   

3.
杨庆娟  王淑莹  刘莹  袁志国  葛翀 《环境科学》2008,29(8):2249-2253
以实际生活污水为对象,研究了反硝化聚磷菌(DPB)的驯化培养以及A2N双污泥反硝化除磷系统的快速启动.采用先独立培养反硝化聚磷菌和好氧硝化生物膜再连续运行的方式成功地快速启动了A2N系统.采用污水处理厂除磷工艺中的活性污泥为种泥,在SBR系统中以先A/O(厌氧/好氧)后A/A(厌氧/缺氧)的方式运行,32 d成功地使反硝化聚磷菌成为优势菌属.在SBR反应器中,采用硝化效果较好的活性污泥为种泥,好氧硝化生物膜30 d挂膜成功,氨氮去除率稳定在99%以上.然后,A2N系统连续运行,11 d后系统反硝化除磷效果进入稳定状态,出水氨氮和正磷酸盐浓度均为0,硝态氮为10.26 mg/L ,出水COD为19.56 mg/L ,COD、氨氮、总氮和磷去除率分别为91%、100%、77%和100%,说明A2N系统具有很好的脱氮除磷效果,认为系统启动成功.  相似文献   

4.
强化生物除磷体系中的反硝化除磷   总被引:20,自引:0,他引:20  
 采用SBR反应器,研究了以硝酸盐作为电子受体的反硝化除磷过程.结果表明,反硝化聚磷菌存在于传统的强化生物除磷体系中.厌氧段磷的释放和COD的消耗成线性关系.通过厌氧/好氧交替运行方式,反硝化聚磷菌在聚磷菌中的比例从13.3%上升到69.4%.稳定运行的厌氧/缺氧SBR反应器具有良好的强化生物除磷和反硝化脱氮性能,缺氧结束时体系中磷浓度小于1mg/L,除磷效率大于89%.  相似文献   

5.
SBR中短程反硝化除磷菌的培养驯化研究   总被引:1,自引:1,他引:0  
以周期运行培养方式在间隙反应器中驯化以亚硝酸盐作为电子受体的反硝化除磷菌,并比较了硝酸盐和亚硝酸盐作为电子受体时反硝化除磷的效果.结果表明,经厌氧/好氧+厌氧/缺氧(连续投加硝酸盐)+厌氧/缺氧/好氧(连续投加亚硝酸盐)方式成功筛选出能以亚硝酸盐作电子受体的反硝化除磷菌,该系统磷的去除率可达88.62%;在外加硝酸盐,...  相似文献   

6.
反硝化聚磷菌可以在缺氧条件下利用硝酸盐氮和亚硝酸盐氮作为电子受体完成吸磷过程,确定反硝化聚磷菌比例对于强化反硝化除磷作用具有重要意义。从一体化活性污泥工艺中取污泥混合液,加入蔗糖合200mg/LCOD后进行厌氧搅拌,2h后将厌氧污泥分成三等份,其中两份分别加入10mg/LNO3--N、10mg/LNO2--N后缺氧搅拌2h,另一份用充氧仪曝气2h。根据厌氧、缺氧/好氧交替过程中不同电子受体下的除磷量,可以简便的确定反硝化聚磷菌在全部聚磷菌中的比例,结果表明该一体化工艺中反硝化聚磷菌在全部聚磷菌中的比例达到98.92%。  相似文献   

7.
《环境科学与技术》2021,44(7):145-153
该文以厌氧/缺氧/好氧方式(An/A/O)运行序批式生物反应器(SBR),采用NO_3~-驯化缺氧反硝化聚磷菌,利用pH值调控An/A/O-SBR内各菌群间的竞争优势,通过考察脱氮除磷过程的化学计量学参数变化,确定了不同pH下SBR内聚磷菌-聚糖菌(PAOs-GAOs)间竞争关系及N_2O释放特性。结果表明,An/A/O-SBR内存在PAOs和GAOs对碳源的竞争,高pH有利于反硝化聚磷菌增殖、提升SBR内同步脱氮除磷效率并降低N_2O产率。pH由6.5增至8.0,PAOs转化外碳源比例由24.1%增至55.6%。pH=8.0,SBR内脱氮和除磷效率均达90%以上,平均N_2O产率为2.8%。不同pH值下,An/A/O-SBR内厌氧阶段ΔGly/ΔPHA、ΔGly/CODin、PRA/CODin以及缺氧阶段PUA/NaRA、ΔGly/ΔPHA均表现出PAOs-GAOs共存特性,微碱性条件促进SBR内微生物趋向富集反硝化聚磷菌的生化反应动力学。pH=6.5,N_2O产率达11.2%。低pH值耦合高NO_2~-形成高浓度游离亚硝酸,对反硝化聚磷菌的毒性及对亚硝态氮还原酶、氧化亚氮还原酶的活性抑制作用,是导致低pH值下SBR脱氮除磷性能降低和N_2O产率增加的重要因素,以N_2O作为终产物的GAOs反硝化比例增加,加剧了低pH条件下N_2O释放。  相似文献   

8.
温度对生物强化除磷工艺反硝化除磷效果的影响   总被引:8,自引:1,他引:7  
以处理城市污水的中试规模生物强化除磷A2/O活性污泥工艺系统为研究对象,考察了温度对系统COD去除和脱氮除磷效果的影响,特别是温度对活性污泥反硝化除磷性能的影响.结果表明,当温度从(30.9±0.8)℃降低到(9.1±0.6)℃时,A2/O系统的脱氮除磷效果显著下降,系统对TN和TP的污泥去除负荷明显下降.通过污泥反硝化除磷活性实验发现,随着温度的降低,系统中活性污泥的最大厌氧释磷速率、最大好氧吸磷速率和最大缺氧吸磷速率都降低.活性污泥中反硝化除磷菌(DPB)占聚磷菌(PAOs)总量的比例随温度降低稍有下降,但平均值仍维持在47.5%左右.用阿伦尼乌斯公式对实验结果进行拟合,得到系统中活性污泥聚磷菌厌氧释磷反应活化能Ea1为148.0 kJ· mol-1,聚磷菌好氧吸磷反应活化能Ea2为228.8 kJ·mol-1,发生在缺氧条件下反硝化除磷菌的吸磷反应活化能Ea3为315.8 kJ·mol-1.对不同温度下污泥絮体粒径分析结果表明,随温度降低,粒径分布更加集中,系统中活性污泥絮体颗粒平均粒径减小,不利于污泥絮体内部反硝化除磷缺氧微环境的形成.  相似文献   

9.
王春英 《环境科技》2009,22(6):24-27
为了进一步了解反硝化聚磷菌(DPB)污泥质量浓度(MLSS)对反硝化除磷过程的影响,进行一系列厌氧、缺氧模拟试验.研究考察DPB污泥的MLSS对厌氧释磷、缺氧反硝化吸磷的影响。结果表明:MLSS越高,释、吸磷速率及反硝化速率越高;MLSS对释、吸磷比速率和反硝化比速率的影响较小;厌氧总释磷量由污水中可利用COD的多少决定,DPB污泥的MLSS只影响到达释磷平衡的时间:污水中含氮量偏低引起反硝化吸磷段NO3^-不足时,DPB污泥厌氧释磷量高于反硝化吸磷量.MLSS越高经缺氧反硝化吸磷处理后水中含磷量越高。  相似文献   

10.
污泥龄对A/A/O工艺反硝化除磷的影响   总被引:12,自引:0,他引:12  
徐伟锋  陈银广  张芳  顾国维 《环境科学》2007,28(8):1693-1696
以实际生活污水培养驯化污泥的小试规模A/A/O工艺为研究对象,进行了污泥龄(SRT)为8、10、12和15 d时对反硝化除磷的影响研究.结果表明,随着污泥龄的延长,反硝化除磷对系统除磷所起的作用越大,反硝化聚磷菌缺氧利用单位PHAs的反硝化数量和吸磷量也迅速增加,聚磷菌好氧利用单位PHAs的吸磷量并没有受到影响,以SRT为12 d时反硝化除磷和系统脱氮除磷效果为最好.结果还表明,去除单位氮所需COD数量随污泥龄的延长呈减少趋势,而去除单位磷所需COD数量呈增大趋势.对于我国典型的城市污水而言,SRT为12 d和15 d时去除单位氮和磷所需的外碳源数量较8 d时要低,从而使反硝化除磷作用可真正地达到节省碳源和能源的目的.  相似文献   

11.
MUCT-MBR工艺反硝化除磷脱氮研究   总被引:3,自引:2,他引:1  
自行设计的双反应器MUCT-MBR简化了MUCT工艺,将反应池由5个简化到2个,减小了工艺占地面积,并且采用膜过滤取代二沉池出水,操作简单,出水安全可靠.针对MUCT-MBR工艺脱氮除磷性能,尤其是反硝化除磷功能进行研究.结果表明,当进水C/N/P比在33.3/5/1~25/5.5/1范围内,整个实验过程中COD、 TN和TP平均去除率分别达到89.3%、 75.4%、 79.2%;且膜出水不受污泥沉降性的影响.缺氧段的反硝化吸磷是MUCT-MBR工艺除磷的关键,系统运行至第58 d,系统中反硝化除磷菌(DPAOs)所占比例达84.2%,反硝化除磷占系统总磷去除的67.07%.  相似文献   

12.
以生活污水作为处理对象,采用双泥折流板反应器,进行了反硝化除磷的启动运行试验研究。在进水有机负荷为0.5kg/(m^3.d),m(C)lm(N)=5,t=30(+0.5)℃,HRT=11.08h,R=0.4,r=0.38,SRT=20d的条件下,系统对CODCr,TN,TP,氨氮的去除率分别为67%,63%,50%和82%,出水质量浓度分别为70mg/L,18mg/L,2.8mg/L,6.8mg/L.表明采用该装置进行反硝化除磷的研究是可行的。  相似文献   

13.
SBR工艺中反硝化除磷特性研究   总被引:1,自引:0,他引:1  
张超  吕锡武 《环境科学》2007,28(10):2259-2263
在NO-3-N/COD为0.04、0.095、0.125和0.27条件下,采用SBR反应器研究了反硝化除磷的特性.试验表明,污染物与控制参数(pH、ORP、 DO)具有良好的相关性.在搅拌阶段,ORP可以指示是否发生了反硝化聚磷反应;在好氧阶段,上述3个参数都可以监测TN浓度的低谷(NAS point),但是pH最为灵敏.在NAS point排放上清液,能提高反应器的效率和出水水质.在反硝化聚磷的过程中,反硝化聚磷菌(DPBs)首先快速将NO-3-N转化为某种中间产物,然后再将该产物逐渐转化为N2.有机碳源对DPBs的除磷能力有较大影响,当NO-3-N/COD大于0.095时,随着比值的升高,DPBs除磷能力增强.结果表明,为取得良好的反硝化除磷效果,NO-3-N/COD应不低于0.125.  相似文献   

14.
印雯  陈亚  张钰  徐乐中  吴鹏  刘文如 《环境科学》2019,40(11):5032-5039
采用改进型ABR-MBR反应器,接种普通活性污泥,以氨氮为200 mg·L~(-1)、C/N=1的人工配水为处理对象,研究全程自养脱氮耦合反硝化除磷一体式工艺的启动及其脱氮除磷效能.控制反应器运行条件:温度为(25±1)℃,pH=7. 5±0. 2,回流比由50%逐步提升至200%.结果表明,ABR厌氧阶段消耗70%COD,使得在低DO、高氨氮下能够21 d内快速启动部分亚硝化;随后以间歇曝气(曝停比:2 h∶2 h,DO为0. 3~0. 4 mg·L~(-1))的运行方式在132 d内成功启动耦合工艺内的CANON部分,使得ABR缺氧段的电子受体中硝酸盐氮浓度稳步上升,最终于160 d成功启动耦合工艺.稳定运行后,MBR内TN去除负荷达到0. 22 kg·(m~3·d)~(-1),出水各项指标COD、TN和PO_4~(3-)-P去除率分别为87. 0%、90. 4%和81. 8%.批次试验估算ABR内以硝酸氮盐为电子受体的PAOs约占PAOs的68%,系统内已培育出相互适应协作的DPAOs、AOB和An AOB菌种,具有良好同步脱氮除磷效果.  相似文献   

15.
废水反硝化除磷技术应用研究进展   总被引:1,自引:0,他引:1  
废水的反硝化除磷技术作为生物除磷的一个新思路,因其能够解决废水处理工艺运行中碳源不足、污泥产量大和好氧阶段曝气能耗大等问题,受到环境保护领域的关注。文章对反硝化除磷的机理、影响因素、现有工艺及研究现状作了综述,并对反硝化除磷技术未来发展作了展望。认为今后研究重点应集中在以下几个方面:①对DPBs有更全面的认识,富集和筛选更多高效的DPBs菌株;②在理论研究的基础上开发更多的反硝化除磷工艺,并将其应用于工程实践。  相似文献   

16.
菌株DA-1被发现能在好氧和厌氧环境中将硝酸盐转化为气态氮。在以NO3-为唯一氮源的条件下研究了碳源、C/N和pH值对菌株DA-1好氧和厌氧反硝化脱氮的影响。结果表明:同等条件下,48 h内菌株DA-1的厌氧脱氮效率高于好氧脱氮率;菌株DA-1能在好氧和厌氧条件下利用乙酸、柠檬酸以及葡萄糖进行细胞增殖和反硝化。在厌氧条件下,三者作为碳源时的反硝化效率分别为(34.04±0.15)%、(22.72±0.32)%和(11.32±0.06)%,均低于好氧条件下的(25.38±0.14)%、(17.52±0.11)%和(8.06±0.01)%。2种条件下均是乙酸为碳源时反硝化效率最高。而丁二酸仅能在厌氧环境中作为电子供体参与反硝化反应。C/N越高越有利于菌株DA-1的厌氧反硝化,当C/N为10时,反硝化效率最高为(35.06±0.19)%。而在好氧条件下,菌株反硝化效率随着C/N的升高,先升高再降低,当C/N为8时,反硝化效率最高;好氧和厌氧脱氮的最适pH值为7.0。体系偏酸或者偏碱都会造成菌株DA-1脱氮效率的降低并出现亚硝酸盐累积。厌氧环境中pH=5.0时累积的亚硝酸盐浓度高达(8.95±2.05)mg/mL。  相似文献   

17.
碳源浓度和污泥龄对反硝化聚磷脱氮影响研究   总被引:3,自引:2,他引:1  
利用间歇试验研究了反硝化除磷过程中有机碳源和污泥龄对脱氮除磷的影响。试验结果表明:(1)厌氧段碳源COD浓度越高(150~250mg/L),放磷越充分,则缺氧段反硝化和吸磷速率越大;但当碳源COD浓度超过200mg/L时,未反应完全的有机物残留于后续缺氧段对缺氧吸磷产生抑制作用。(2)在水温为15℃~25℃,污泥负荷为0.12kgCOD(/kgMLSS·d),SRT为15d,HRT为7h时,利用人工配水作为碳源,在保持较高的COD去除率的同时,总氮和总磷的去除率最高,分别在80%和88%以上。  相似文献   

18.
利用静态试验研究了电子受体类型对反硝化吸磷的影响,并且对以硝酸盐作为电子受体的反硝化除磷工艺提出了建议。试验结果表明:电子受体初始浓度为10.58mg/L-22.33mg/L时,以硝酸盐作为电子受体时的反硝化速率要大于以亚硝酸盐作为电子受体的反硝化速率;以硝酸盐作为电子受体时的缺氧吸磷速率也大于以亚硝酸盐作为电子受体时的缺氧吸磷速率。以硝酸盐作为电子受体的反硝化除磷系统中,亚硝酸盐冲击负荷会对系统脱氮除磷效果产生严重的影响。  相似文献   

19.
废水反硝化除磷影响因素的分析   总被引:1,自引:1,他引:0  
介绍了反硝化除磷技术的原理、主要影响因素和实现反硝化除磷的新途径。国内外对碳氮质量比,亚硝酸盐对反硝化除磷的影响的研究结果存在争议。本文对有争议和有待于深入研究的影响因素作了总结。目前,关于在工艺中如何实现反硝化除磷的研究有了突破性进展。这些新途径有:AOAO—SBR工艺、好氧颗粒污泥法。反硝化除磷技术已从基础性研究发展到了工程应用阶段,随着微生物学及生物化学的进一步发展和研究的进一步深入.人们对反硝化除磷机理、影响因素将有更加清楚的认识。这些都将进一步促进反硝化除磷技术的应用推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号