首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The farm pond system for irrigation is the most prominent feature in the Taoyuan area, Taiwan, giving the region a unique landscape and hydrological character. Although this area had more than 3,290 ponds in the 1970s, fewer than 1,800 now remain. This study analyzes changes in irrigation farm ponds and the canal network landscape in the Taoyuan area. The spatial and temporal changes to ponds and the canal network on the Taoyuan plain were examined graphically for each spatial unit (2,765 m × 2,525 m) using aerial photographs for 1979 and 2005. Landscape metrics were calculated to analyze landscape change associated with increased urbanization. Landscape indices of connectivity and circuitry were utilized to describe changes in the configuration of ponds and canal networks. The total length of canals and total number of ponds in the study area decreased significantly during 1979-2005. The average values of connectivity indices (γ- and α-index) also decreased during 1979-2005, reflecting degradation of canal networks due to urban sprawl. A multivariate technique was applied to portion the study area into three zones according to changes to land cover, ponds, and canal networks. The effects of urban sprawl on the spatial pattern of ponds and canal networks are discussed.  相似文献   

2.
ABSTRACT If one goes to Iraq today, as I did in the summer of 1972 one sees that the area once served by this ancient canal system is presently abandoned to desert. The Ur III texts would indicate that the Sumerian irrigation system allowed them to raise good crops of grain, vegetables and fruits, in an area now completely barren except for an occasional thorn-bush. This paper deals in detail with the Sumerian term nag-ku5, which seems to be a key word in arriving at a more accurate picture of Sumerian canal and irrigation systems. Ur III material indicates that the nag-ku5 may have served a role similar to that of the modern settling-reservoir. The aim of this study is the hope that knowledge of the past could help this desert bloom once more.  相似文献   

3.
As withdrawals from deep compartmentalized aquifers increasingly exceed recharge throughout the western United States, conjunctive water use management alternatives have become an applied research priority. This study highlights both details and limitations of the role of irrigation canal seepage as groundwater recharge, revealing the regional limitations of canal seepage as a dependable source of recharge in overdrawn aquifers. A suite of geochemical indicators were used together with a numerical model to evaluate current and future management scenarios focused on recharge derived from seepage from a region‐wide irrigation canal system. Twenty‐five years of static groundwater level data were used to relate spatial trends determined using geochemistry and groundwater modeling with “on‐the‐ground” management practices, which vary based on acreage, crop, and irrigation scheduling. Increasing groundwater age determined using isotope analysis, and declines in potentiometric heads, each correlate with increasing distance from the canal reaches. Predictive modeling indicates that if pumping is gradually reduced, as has been suggested by management agencies, that recharge from canal seepage will be negligible by 2035 due to regional groundwater through‐flow and the pattern of potentiometric head recovery. Unfortunately, historic hydrographs suggest that under current groundwater development conditions most wells are not sustainable, irrespective of proximity to the canal.  相似文献   

4.
Selenium status in soils of northern districts of India   总被引:1,自引:0,他引:1  
The HG-AAS technique was used to estimate the soil selenium status of the agricultural lands of northern parts of India. The drier lands where lesser rains were received or where less irrigation water was available in Rajasthan and southern parts of the Haryana states had above normal soil selenium levels. These soils were also found to be alkaline. Punjab, Himachal Pradesh and northern parts of the Haryana states had normal levels of selenium in their soils, except with slightly lower selenium levels in a few areas that were affected by floods along the river Yamuna. The results were also confirmed using the ICP-OES technique.  相似文献   

5.
The paper suggests that the expansion of irrigated agriculture in the 20th century has de-coupled the water user from the inherent risk of exploiting both surface and groundwater resources. The apparent reliability of storage and conveyance infrastructure and the, relative cheapness and flexibility of groundwater exploitation offered by mechanised drilling and pumping have sheltered the end user from natural hydrological risk. The imperative for in-field irrigation efficiency has been effectively removed since the physical and economic management of the resource is determined by command area authorities or, in the case of some groundwater pumping, by the performance of power utilities, who have no direct interest in integrated resource conservation. As a result, the resource base has been degraded, and in some cases irreparable damage has occurred. It is argued that the rigidity of the resource management in many irrigation systems is not attuned to the inherent variability of natural systems upon which they depend. Further, the paper argues that irrigation management systems can work toward sustainability by spreading risk equitably, and transparently, amongst the resource regulators, managers and users. This has to involve a much more flexible approach to natural resource management that is conditioned not only by natural parameters, but also by the socio-economic settings. A range of examples highlights the variability and scale issues involved.  相似文献   

6.
Phosphorus exchangeability and leaching losses from two grassland soils   总被引:1,自引:0,他引:1  
Although phosphate phosphorus (P) is strongly sorbed in many soils, it may be quickly transported through the soil by preferential flow. Under flood irrigation, preferential flow is especially pronounced and associated solute losses may be important. Phosphorus losses induced by flood irrigation were investigated in a lysimeter study. Detailed soil chemical analyses revealed that P was very mobile in the topsoil, but the higher P-fixing capacity of the subsoil appeared to restrict P mobility. Application of a dye tracer enabled preferential flow pathways to be identified. Soil sampling according to dye staining patterns revealed that exchangeable P was significantly greater in preferential flow areas as compared with the unstained soil matrix. This could be partly attributed to the accumulation of organic carbon and P, together with enhanced leaching of Al- and Fe-oxides in the preferential flow areas, which resulted in reduced P sorption. The irrigation water caused a rapid hydrologic response by displacement of resident water from the subsoil. Despite the occurrence of preferential flow, most of the outflowing water was resident soil water and very low in P. In these soils the occurrence of preferential flow per se is not sufficient to cause large P losses even if the topsoil is rich in P. It appears that the P was retained in lower parts of the soil profile characterized by a very high P-fixing capacity. This study demonstrates the risks associated with assessing potential P losses on the basis of P mobility in the topsoil alone.  相似文献   

7.
Expansion of irrigation in the Yellow River (Huang He in Chinese) Basin of China is a major accomplishment of the post-revolutionary period in China. Irrigation reliance on the Yellow River was anticipated to not only supply greater reliability of water for crops, but also to improve the productivity of aeolian, saline and alkali soils because of the high sediment loads in the river. Irrigation expansion also was a significant factor in affecting human modification of the landscape ecosystem in the lower reaches of the Yellow River. Based on field investigation and sampling of the amount and distribution of used suspended sediment load in irrigated areas, this paper analyzes the impact of the suspended sediment on soil texture, fertility and salinity and the consequences to the landscape ecosystem. Results indicate that soil quality has indeed been improved through irrigation and related deposition of sediment, but some local problems created by long periods of irrigation should not be ignored in the future.  相似文献   

8.
Land application of coalbed natural gas (CBNG) co-produced water is a popular management option within northwestern Powder River Basin (PRB) of Wyoming. This study evaluated the impacts of land application of CBNG waters on soil chemical properties at five sites. Soil samples were collected from different depths (0-5, 5-15, 15-30, 30-60, 60-90, and 90-120 cm) from sites that were irrigated with CBNG water for 2 to 3 yr and control sites. Chemical properties of CBNG water used for irrigation on the study sites indicate that electrical conductivity of CBNG water (EC(w)) and sodium adsorption ratio of CBNG water (SAR(w)) values were greater than those recommended for irrigation use on the soils at the study sites. Soil chemical analyses indicated that electrical conductivity of soil saturated paste extracts (EC(e)) and sodium adsorption ratio of soil saturated paste extracts (SAR(e)) values for irrigated sites were significantly greater (P < 0.05) than control plots in the upper 30-cm soil depths. Mass balance calculations suggested that there has been significant buildup of Na in irrigated soils due to CBNG irrigation water as well as Na mobilization within the soil profiles. Results indicate that irrigation with CBNG water significantly impacts certain soil properties, particularly if amendments are not properly utilized. This study provides information for better understanding changes in soil properties due to land application of CBNG water. These changes must be considered in developing possible criteria for preserving fragile PRB ecosystems.  相似文献   

9.
ABSTRACT In humid areas appreciable amounts of rainfall complicate irrigation scheduling. This rainfall tends to give supplemental water application a low priority. As a result irrigation may be delayed until there is not enough time to cover the crop area before some drought damage occurs. To improve the management of irrigation systems, a scheduling model has been developed. The model's water application decisions incorporate climatological records, soil-plant data, current pan evaporation and rainfall, the number of fields to be irrigated, and 5-day weather forecasts. The model updates the soil moisture conditions, predicts impending water depletion, and if supplemental water is needed both the field priority and amount to be applied is indicated for each of the next 5 days. Errors introduced through the use of forecasts and long-term pan evaporation records have been slight because of the tri-weekly updating. Also natural rains which restore the root zone to maximum water holding capacity prevent long-term bias.  相似文献   

10.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   

11.
ABSTRACT: Irrigation has expanded in parts of the eastern United States. In some areas, the adjoining surface (riparian) water is the most economical source of irrigation water. Expanded demand for riparian water may lead to conflict among irrigators and other streamflow users. Accurate information on the potential for and impacts of riparian irrigation expansion is needed to decide if control of such expansion is necessary. In this study, a stochastic economic model to evaluate the impacts of potential irrigation expansion is presented. The model considers the soil, location, and land use characteristics of individual sites, as well as weather and streamflow patterns. The application of the model to an eastern Virginia watershed indicates that, with maximum potential expansion, water availability becomes limited and yields will be reduced in some years. As a result, the expected net returns from irrigation and the probability of breaking even on the investment are reduced substantially. The results suggest the need to consider regulation of surface water allocation for irrigation development in riparian watersheds.  相似文献   

12.
Risk of cadmium (Cd) in the human food chain in Cd-contaminated areas is often limited by phytotoxicity from zinc (Zn) that is associated with the Cd contamination. A semiarid area, 60 km downstream of a tin mine in Bolivia, was surveyed where irrigation with Cd-contaminated river water (65-240 microg Cd L(-1)) has increased median soil Cd to 20 mg kg(-1) while median soil Zn was only about 260 mg kg(-1). Cadmium concentrations in potato tubers increased from background values (0.05 mg kg(-1) dry wt.) in soils irrigated with spring water to a median value of 1.2 mg kg(-1) dry wt. in the affected area. Median concentration of Cd in soil solutions was 27 microg L(-1) and exceeded the corresponding value of Zn almost twofold. Soil-extractable chloride ranged from 40 to 1600 mg Cl(-) kg(-1) and was positively correlated with soil total Cd. Increasing soil solution Cl(-) decreased the solid-liquid distribution coefficient of Cd in soil. Soil total Cd explained 64% of the variation of tuber Cd concentration while only 3% of the variation was explained by soil extractable Cl(-) (n = 49). The estimated dietary Cd intake from potato consumption by the local population is about 100 microg d(-1) which exceeds the WHO recommended total daily intake. It is concluded that the food chain risk of Cd in the irrigation water of the semiarid area is aggravated by the association with Cl(-) and, potentially, by the relatively large Cd/Zn ratio.  相似文献   

13.
Effects of petroleum contamination on bacterial diversities and enzymatic activities in paddy soils were investigated in the Shenfu irrigation area, the largest area irrigated by oil-containing wastewater for more than 50 yr in northeastern China. Bacterial diversities were determined by conventional colony morphology typing techniques and 16S rDNA polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Dehydrogenase, hydrogen peroxidase, polyphenol oxidase, urease, and substrate-induced respiration (SIR) were measured to evaluate the effects of petroleum-containing wastewater irrigation on soil biochemical characteristics. Results showed that paddy soil total petroleum hydrocarbon (TPH) concentration in the irrigation area varied from 277.11 to 5213.37 mg kg(-1) dry soil. Soil TPH concentration declined along the gradient of the irrigation channel from up- to downstream. At the current pollution level, the paddy soil TPH concentration was positively correlated with the colony forming units (CFU) of aerobic heterotrophic bacteria (AHB) (r = 0.928, p < 0.001) and the genetic diversity based on DGGE profiles (r = 0.655, p < 0.05). The bacterial diversities in the soils based on colony morphotypes of AHB also increased with TPH concentration (r = 0.598), but not significant statistically (p = 0.052). Analysis of soil enzyme activities indicated a significant positive correlation between soil TPH concentration and activities of dehydrogenases (r = 0.974, p < 0.001), hydrogen peroxidases (r = 0.957, p < 0.001), polyphenol oxidases (r = 0.886, p < 0.001), and SIR (r = 0.916, p < 0.001). On the contrary, the urease activity showed a negative correlation with paddy soil TPH concentration (r = -0.814, p = 0.002), and could be used as a sensitive indicator of petroleum contamination.  相似文献   

14.
The fate of cadmium in soils is governed by spatially heterogeneous processes that proceed from decades to centuries. This study aimed at modeling the fate of Cd within the wastewater irrigation area (WIA) of Braunschweig (Germany). The sandy soils (mainly Dystric Cambisol or Typic Haplumbrept) at this site (28 km2) have received considerable loads of heavy metals by irrigation of municipal wastewater for up to 40 yr. The soils of the WIA are in agricultural use. The main crops are sugar beet (Beta vulgaris L.), potato (Solanum tuberosum L.), and wheat (Triticum aestivum L.). As a result of asparagus (Asparagus officinalis L.) cropping, about 15% of the soils have been converted to Rigosols. In 1996, we measured the vertical distribution (0 to 1.2 m) of soil pH, organic carbon content, and the EDTA-extractable content and the solution phase concentration of Cd at 153 sites. At sites not used for asparagus cultivation, Cd has migrated on average to a depth of about 0.5 m. Due to deep plowing, which accelerates migration, Cd has been displaced on average to about 0.7 m at the Rigosol sites. To model the fate of Cd at the scale of the WIA, we used different parallel soil column approaches. In each column the local model SEFAH was used to simulate both displacement and plant uptake of Cd. The model was fed with measured or randomly generated soil data. The results of retrospective simulations from 1957 to 1996 agreed well with observed Cd profiles. The better the spatial variability of sorption was described, the better the performance. Our simulation results show that Cd pollution of soil at first affects the soil-plant pathway. The breakthrough of Cd to the groundwater is dampened and is delayed for many decades.  相似文献   

15.
通过对昌吉州三工镇和榆树沟镇、米泉市古牧地镇和柏杨河乡种植区土壤、空气质量、灌溉水的监测分析与调查研究,对比清洁区蔬菜基地与污灌区蔬菜基地环境现状,探讨了灌溉用水对蔬菜质量的影响,提出切实可行的防治措施.  相似文献   

16.
ABSTRACT: Soil-water conditions provide valuable insight into the hydrologic system in an area. A soil-water balance quantitatively summarizes soil-water conditions and is based on climatic, soil, and vegetation characteristics that vary spatially and temporally. Soil-water balances in the Great Plains of the central United States were simulated for 1951–1980. Results of the simulations were mean annual estimates of infiltration, runoff, actual evapotranspiration, potential recharge, and consumptive water and irrigation requirements at 152 climatic data stations. A method was developed using a geographic information system to integrate and map the simulation results on the basis of spatially variable climatic, soil, and vegetation characteristics. As an example, simulated mean annual potential recharge was mapped. Mean annual potential-recharge rates ranged from less than 0.5 inch in much of the north-central and southwestern Great Plains to more than 10 inches in parts of eastern Texas and southwestern Arkansas.  相似文献   

17.
The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3?% of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4?% of it has unsuitable waters. Approximately, 46?% of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.  相似文献   

18.
Summary This study evaluates the impact of intensive market gardening on the nutrient status of hydromorphic soil in the Ojo area of Lagos metropolis. Following 15–20 years of continuous market gardening, the organic matter content of the 0–10 cm layer of the hydromorphic soil has been reduced to 75 percent of the level found in a swamp forest soil used as a control. The extent of the organic matter decline in the cultivated soil is slight compared with the degree of organic matter diminution in well-drained soil used for shifting or continuous cultivation. This is due to the low degree of humus mineralisation in water-logged soil and the application of organic manure.In spite of regular application of both organic and inorganic fertilisers, the levels of exchangeable calcium, magnesium, potassium and sodium are lower in the 0–10 cm and 10–20 cm layers of the intensively cultivated hydromorphic soil used for market gardening than in the swamp forest control areas. The mean level of extractable manganese is lower in the 10–20 cm layer of the cultivated soil. These differences are due to nutrient immobilisation and removal in harvested vegetables, and to nutrient loss from the market gardening plots through erosion. There is, however, a build-up of available phosphorus in the surface layer of the market garden soil due to the application of inorganic phosphate fertilisers.The levels of mineral nutrients in the surface layers of the cultivated soil are within the optimal ranges for most arable crops, suggesting that the soil is not impoverished. This is due to the judicious application of both organic and inorganic fertilisers, and is indicative of the fact that hydromorphic soils can support continuous cultivation under proper management.Dr A.O. Aweto is a Senior Lecturer in the Department of Geography, and Mr G.M. Ogurie was until recently a geography student in the same department.  相似文献   

19.
ABSTRACT: Using a geographic information system, a regression model has been developed to identify and to assess potential sources of selenium in the Kendrick Reclamation Project Area, Wyoming. A variety of spatially distributed factors was examined to determine which factors are most likely to affect selenium discharge in tributaries to the North Platte River. Areas of Upper Cretaceous Cody Shale and Quaternary alluvial deposits and irrigated land, length of irrigation canals, and boundaries of hydrologic subbasins of the major tributaries to the North Platte River were digitized and stored in a geographic information system. Selenium concentrations in samples of soil, plant material, ground water, and surface water were determined and evaluated. The location of all sampling sites was digitized and stored in the geographic information system, together with the selenium concentrations in samples. A regression model was developed using stepwise multiple regression of median selenium discharges on the physical and chemical characteristics of hydrologic subbasins. Results indicate that the intensity of irrigation in a hydrologic subbasin, as determined by area of irrigated land and length of irrigation delivery canals, accounts for the largest variation in median selenium discharges among subbasins. Tributaries draining hydrologic subbasins with greater intensity of irrigation result in greater selenium discharges to the North Platte River than do tributaries draining subbasins with lesser intensity of irrigation.  相似文献   

20.
ABSTRACT: The karez is a traditional irrigation water source, consisting of hand-dug horizontal wells, that is still used in parts of South Asia, the Middle East, and North Africa. This paper describes the construction, management, and current problems of karez irrigation systems based on investigations conducted in Baluchistan Province, Pakistan. While karezes have served irrigation needs well in the past, they are now threatened by high costs of labor for construction and maintenance, and by the encroachment of tubewells which lower the water tables on which the karez systems depend. Possible methods for improving karez performance and needs for research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号