首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utilization of the coffee husk fiber (CHF) from the coffee industry as a reinforcing filler in the preparation of a cost-effective thermoplastic based composite was explored in this study. The chemical composition and thermal properties of the CHF were investigated and compared with those of wood fiber (WF). CHF proved to be mainly composed of cellulose, hemicellulose and lignin, and exhibited similar thermal behavior to WF. High density polyethylene (HDPE) composites with CHF loadings of from 40 to 70% were prepared using melt processing and extrusion. The processing properties, mechanical behavior, water absorption and thermal performance of these composites were investigated. The effect of maleated polyethylene (MAPE) used as a coupling agent on the composite was explored. The experimental results showed that increasing the CHF loading in the HDPE matrix resulted in an increase in the modulus and thermal properties of the composites, but resulted in poor water resistance. The addition of a 4% MAPE significantly improved the interfacial behavior of the hydrophilic lignocellulosic fiber and the hydrophobic polymer matrix.  相似文献   

2.
Hybrid composites of thermoplastic biofiber reinforced with waste newspaper fiber (NF) and poplar wood flour (WF) were prepared. The weight ratio of the lignocellulosic materials to polymer was 30:70 (w:w). Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were also used as the polymer matrix and coupling agent, respectively. The mechanical properties, morphology and thermal properties were investigated. The obtained results showed that tensile and flexural modulus of the composites were significantly enhanced with addition of biofibers in both types (fiber and flour), as compared with pure PP. However, the increasing in WF content substantially reduced the tensile, flexural and impact modulus, but improved the thermal stability. This effect is explained by variations in fiber morphological properties and thermal degradation. Increasing fiber aspect ratio improved mechanical properties. The effect of fiber size on impact was minimal compared to the effects of fiber content. Scanning electron microscopy has shown that the composite, with coupling agent, promotes better fiber–matrix interaction. The largest improvement on the thermal stability of hybrid composites was achieved when WF was added more. In all cases, the degradation temperatures shifted to higher values after addition of MAPP. This work clearly showed that biofiber materials in both forms of fiber and flour could be effectively used as reinforcing elements in thermoplastic PP matrix.  相似文献   

3.
This research work aims to investigate the synergistic effect of pozzolanic materials such as oil palm ash (OPA) and oil palm empty fruit bunch (OPEFB) on the developed hybrid polymer composites. The OPEFB and OPA fillers of different particle sizes (250, 150, and 75 µm) were mixed at OPEFB:OPA ratios of (0:100; 20:80; 40:60; 60:40; 80:20 and 100:0) and incorporated into an unsaturated polyester resin. Furthermore, both mechanical and morphological properties of the composites were analyzed and it was found that tensile, flexural, and impact properties were significantly improved at OPEFB:OPA of 75 µm particle size hybridization of the polymer. The increase of OPEFB to OPA filler ratio up to 80:20 significantly improved the tensile properties of the composites while 40:60 ratio of 75 µm gave the optimum filler ratio to obtain the highest flexural and impact properties of the composites among all studied samples. Scanning electron micrograph images showed strong particle dispersion of the embedded fillers with resin which explained the excellent mechanical strength enhancement of the composite.  相似文献   

4.
Natural filler/high density polyethylene (HDPE) injection-molded composites of flour from different lignocellulosic sources were prepared, and their long-term water absorption and thickness swelling were studied. Filler samples from wheat straw, hybrid Euro-American poplar, and loblolly pine were mixed with the matrix at 35 wt% lignocellulosics content and either zero or 2% maleic anhydride grafted polyethylene (MAPE) as compatibilizer. Results indicated water absorption of all the composites followed the kinetics of a Fickian diffusion process. The water diffusion coefficient of the composites was clearly dependent upon the lignocellulosic type. The wheat straw composites showed the highest and the pine composites exhibited the lowest water absorption coefficients. The highest thickness swelling took place in the wheat straw composites, followed by the poplar and pine composites, respectively. Adding MAPE to the composites decreased the water diffusion coefficient and thickness swelling by improving the adhesion between natural filler and the HDPE.  相似文献   

5.
The potential of lignocellulosic fibers obtained by dry grinding of pinhão coat as fillers in starch filmogenic solutions for packaging applications was evaluated in this work. To improve the incorporation of this waste into the starch solutions different physical and chemical treatments were conducted. Thereafter, morphology, chemical structure, crystallinity and water absorption of the pinhão coat powders were determined. The composites were also characterized regarding their morphology, chemical structure, crystallinity, mechanical properties, water vapor permeability and hydrophilicity. Poor fiber/matrix adhesion and high water absorption of the fibers were evidenced. Consequently, water vapor permeability of composites was increased by incorporating the fibers. Moreover, mechanical properties were improved and the morphological results were used to support the water absorption differences among the powders. Regarding the food packaging applications, starch/pinhão coat composites appeared as promising materials to reach the requirements of respiring food products.  相似文献   

6.
This research focused on life cycle assessment (LCA) and techno-economic analysis (TEA) comparisons of polylactic acid (PLA) composites, in order to compare organic to inorganic fillers. Organic fillers included DDGS, flax, hemp, rice husks, and wood, and were compared against inorganic fillers (glass and talc) for PLA-based composites. This study utilized LCAI and TEA methodology to estimate and quantify costs, emissions, and energy intensity (EI) associated with material acquisition, processing, transport, and end-of-life treatment used during plastic composite production. Emission categories analyzed include global warming potential (GWP), air acidification (AA), air eutrophication (AE), water eutrophication (WE), ozone layer depletion (OLD), air smog (AS), high carcinogens (HC), and high non-carcinogens (HNC). To achieve a “Cradle-to-Grave” perspective, two models were meshed, the plastic comparator (PC) and EIO-LCA (EIO), to simulate the EI and emissions associated over the entire life cycle. Based assumptions used, this research has shown that utilizing land fill end-of-life treatment and glass filler composite was the most environmentally harmful option, and maintained the highest economic impact, for all impact categories during PLA composite production. Alternatively, both DDGS and wood filler composites paired with recycling end-of-life treatment were shown to be the least environmentally damaging method and incurred the lowest cost of all PLA composites considered. This study also suggests that utilization of organic bio-based fillers produces a lower economic/environmental impact, and EI, compared to utilization of inorganic fillers in PLA composites. Accordingly, this research has demonstrated the impact of LCA/TEA paired analysis when assessing the bioplastic and biocomposite processing, which may be utilized as a precursor for parallel research undertakings.  相似文献   

7.
Two enhanced-photodegradable polyethylenes were studied to determine the effect of photooxidative degradation upon transport properties. Water vapor permeability of LDPE films containing metal compound prooxidants, weathered to different extents under outdoor exposure was studied. A film made of LDPE blended with 20 wt% of polycaprolactone was also examined to determine if biodegradation over a 40-day period resulted in a measurable change in its water vapor transport characteristics. A gravimetric technique was used to study the effects of outdoor and weather-ometer exposures on the permeability of carbon dioxide of both the LDPE film and (ethylene-carbon monoxide) copolymer films. Generally, photooxidative degradation was seen to be accompanied by a change in transport characteristics of the polymer films.  相似文献   

8.
This study focused on improving the material properties of pea thermoplastic starch (TPS) with polycaprolactone (PCL) and flax fiber. Accordingly, composites of glycerol-plasticized pea starch, polycaprolactone, and flax fiber were prepared through solid-phase compounding and compression-molding. The specimens were characterized through scanning electron microscopy, tensile test, moisture absorption test, and differential scanning calorimetry. Morphological studies of the tensile fracture surfaces revealed poor TPS-PCL interfacial interaction and limited TPS-flax fiber interfacial bonding. The composites showed significant improvements in tensile strength with reduced moisture absorption capability essentially due to the hydrophobicity of PCL. Individual components of the composites retained their respective thermal properties, an indication of thermodynamic immiscibility.  相似文献   

9.
We report in this paper the transport of an aromatic solvent, xylene through palm pressed fibre filled low density polyethylene composites studied at three different temperatures (40, 60, and 80 °C) by conventional weight-gain method. The diffusion parameters were investigated with special reference to the effect of fibre content, temperature and particle size. The effect of alkali treatment on solvent uptake was also analyzed. The transport coefficients of diffusion, permeation and sorption were determined to evaluate the influence of interface bonding on transport properties. The van’t Hoff relationship was used to determine the thermodynamic parameters and was found that the estimated free energies of sorption were all positive, indicating non-spontaneity of the solubility of PPF/LDPE composites. The first order kinetic rate constant and swelling parameters were also evaluated.  相似文献   

10.
The steady increase in production of corn based ethanol fuel has dramatically increased the supply of its major co-product known as distiller’s dried grain with solubles (DDGS). Large amount of DDGS and corn flour are used as an animal feed. The elusieve process can separate DDGS or corn flour into two fractions: DDGS fraction with enhanced protein and oil content or corn flour fraction with high starch content, and hull fiber. This study investigated the feasibility of using fiber from DDGS and corn grain as alternative fillers to wood fiber in high density polyethylene (HDPE) composites made with two different sources of polymers. Two fiber loading rates of 30 and 50% were evaluated for fiber from DDGS, corn, and oak wood (control) to assess changes in various physical and mechanical properties of the composite materials. Two HDPE polymers, a bio-based HDPE made from sugarcane (Braskem), and a petroleum based HDPE (Marlex) were also compared as substrates. The biobased polymer composites with DDGS and corn fibers showed significantly lower water absorption than the Marlex composite samples. The Braskem composite with 30% DDGS fiber loading showed the highest impact resistance (80 J/m) among all the samples. The flexural properties showed no significant difference between the two HDPE composites.  相似文献   

11.
In this research, the influence of thermo-mechanical degradation of polypropylene (PP) on water absorption and thickness swelling of beech wood flour–PP composites were studied. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions. The results showed that the melt flow index, water absorption and thickness swelling of PP significantly increase by extrusion and re-extrusion. The virgin PP and degraded polypropylene were compounded with wood flour (at 60% by weight wood flour loading) in a counter-rotating twin-screw extruder in presence or absence of MAPP to produce wood flour–PP composites. From the results, the composites containing recycled PP exhibited higher water absorption and thickness swelling. The use of MAPP decreased water absorption and thickness swelling in composites made of virgin or recycled PP.  相似文献   

12.
In this research, hybrid composite materials were prepared from combination of oil palm Empty fruit bunches (EFB) fibre and jute fibre as reinforcement, epoxy as polymer matrix. This study intended to investigate the effect of jute fiber hybridization and different layering pattern on the physical properties of oil palm EFB-Epoxy composites. Water absorption and thickness swelling test reveal that hybrid composite shows a moderate water absorption which is 11.20% for hybrid EFB/Jute/EFB composite and 6.08% for hybrid Jute/EFB/Jute composite. The thickness swelling and water absorption of the hybrid composites slightly increased as the layering pattern of hybrid composites changed. Hybrid composites are more water resistance and dimensional stable compare to the pure EFB composites. This is attributed to the more hydrophilic nature of EFB composites. Hybridization of oil palm EFB composites with jute fibres can improve the dimensional stability and density of pure EFB and Jute fibre reinforced composites has higher density of 1.2 g/cm3 compared to all other composites.  相似文献   

13.
The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 °C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.  相似文献   

14.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

15.
Sisal fibers bleached with sodium-hydroxide followed by hydrogen peroxide treatment were incorporated in a thermoplastic starch/ε-polycaprolactone (TPS/PCL) blend via extrusion processing. These samples with smooth and homogenous surfaces were examined for their property, biodegradability and water absorption. Scanning electron microscopy revealed that the fibers were well dispersed in the matrix. In addition, it was found that the fibers and matrices interacted strongly. Blends with 20 % (dry weight-basis) fiber content showed some fiber agglomeration. Whereas blends with 10 % fibers showed increased crystallinity and lower water absorption capacity. The CO2 evolution study showed that the thermoplastic starch samples without any additives had the highest rate and extent of degradation whereas the neat PCL samples had the lowest degradation rate. Addition of fiber to the TPS/PCL blend exhibited the degradation rates and extents that were somewhere in between the pure TPS and neat PCL. This work demonstrates that TPS/PCL composites reinforced with bleached sisal has superior structural characteristics and water resistance and thus, can be used as polymeric engineering composites for different applications.  相似文献   

16.
The use of synthetic and natural bioabsorbable plastics has been severely limited due to their low stiffness and strength properties as well as their strong tendency to absorb moisture. This research focused on the development of bioabsorbable polyphosphate filler/soy protein plastic composites with enhanced stiffness, strength, and water resistance. Bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter were homogenized and compression-molded. Physical, mechanical, and water absorption testing was performed on the molded specimens. Results showed improvements in stiffness, strength, and water resistance with increasing polyphosphate filler content up to 20% by weight. Application of a coupling agent produced further mechanical property enhancements and a dramatic improvement in water resistance, interpreted by an interfacial chemical bonding model. Examination of the fracture surfaces of the materials revealed that the addition of the polyphosphate fillers changed the failure mode from brittle to pseudo-ductile. These results suggest that these materials are suitable for many load-bearing applications in both humid and dry environments where current soy protein plastics are not usable.  相似文献   

17.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

18.
To explore the commercial viability of Polyhydroxybutyrate (PHB)/wood flour (WF) composites, systems were produced at industry-standard levels of fiber loading. Further, four interfacial modifiers were selected to improve the mechanical properties of PHB/WF composites, including maleated PHB (PHB-g-MA), a low molecular weight epoxy, a low molecular weight polyester, and polymethylene-diphenyl-diisocyante (pMDI). Results showed that all modifiers resulted in improvements in tensile strength and modulus, however, pMDI showed the highest improvements. The pMDI modifier also improved water uptake of the composites. Study of the fracture surfaces showed signs of improved fiber bonding, as did morphological studies by dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Interpretation of the DSC and DMA results indicate possible reactions with lubricant, and interactions between PHB and wood fibers with the addition of pMDI.  相似文献   

19.
Municipal solid wastes generated each year contain potentially useful and recyclable materials for composites. Simultaneously, interest is high for the use of natural fibers, such as flax (Linum usitatissimum L.), in composites thus providing cost and environmental benefits. To investigate the utility of these materials, composites containing flax fibers with recycled high density polyethylene (HDPE) were created and compared with similar products made with wood pulp, glass, and carbon fibers. Flax was either enzyme- or dew-retted to observe composite property differences between diverse levels of enzyme formulations and retting techniques. Coupling agents would strengthen binding between fibers and HDPE but in this study fibers were not modified in anyway to observe mechanical property differences between natural fiber composites. Composites with flax fibers from various retting methods, i.e., dew- vs. enzyme-retting, behaved differently; dew-retted fiber composites resulted in both lower strength and percent elongation. The lowest level of enzyme-retting and the most economical process produces composites that do not appear to differ from the highest level of enzyme-retting. Flax fibers improved the modulus of elasticity over wood pulp and HDPE alone and were less dense than glass or carbon fiber composites. Likely, differences in surface properties of the various flax fibers, while poorly defined and requiring further research, caused various interactions with the resin that influenced composite properties.  相似文献   

20.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号