首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

2.
Wheat gluten is a naturally occurring protein polymer. It is biodegradable and very inexpensive (less than $1.00/kg). Nonfood applications of wheat gluten have been explored to develop biodegradable polymers from renewable resources. In this work, gluten was reinforced with unidirectional basalt fibers in a compression molding operation. Biodegradation behavior of wheat gluten/basalt composites was examined by putting specimens into soil of prescribed moisture content. Specimens were removed at various time intervals and tested for mass loss and change in mechanical properties. Both mass and mechanical properties show a steady decline over a soil exposure time of 40 days. However, the basalt composite retained mechanical properties longer. At the same time, the bacterial count on the specimen surfaces increased exponentially. Field emission scanning electron microscope images show smooth fracture surfaces, indicating brittle failure of the wheat gluten. However, there are many small holes in the protein matrix with diameter of order 100 nm. These small inclusions may contribute to the brittleness through stress concentration.  相似文献   

3.
The next generation of manufactured products must be sustainable and industrially eco-efficient, making materials derived from plants an alternative of particular interest. Wheat gluten (WG) is an interesting plant material to be used for production of plastic similar materials due to its film-forming properties. For usage of plastics in a wider range of applications, composite materials with improved mechanical properties are demanded. The present study investigates the possibilities of reinforcing WG plastics with hemp fibers. Samples were manufactured using compression molding (130 °C, 1600 bar, 5 min). Variation in fiber length, content (5, 10, 15 and 20 wt%) and quality (poor, standard, good) were evaluated. Mechanical properties and structure of materials were examined using tensile testing, light and scanning electron microscopy. Hemp fiber reinforcement of gluten plastics significantly influenced the mechanical properties of the material. Short hemp fibers processed in a high speed grinder were more homogenously spread in the material than long unprocessed fibers. Fiber content in the material showed a significant positive correlation with tensile strength and Young’s modulus, and a negative correlation with fracture strain and strain at maximum stress. Quality of the hemp fibers did not play any significant role for tensile strength and strain, but the Young’s modulus was significantly and positively correlated with hemp fiber quality. Despite the use of short hemp fibers, the reinforced gluten material still showed uneven mechanical properties within the material, a result from clustering of the fibers and too poor bonding between fibers and gluten material. Both these problems have to be resolved before reinforcement of gluten plastics by industrial hemp fibers is applicable on an industrial scale.  相似文献   

4.
5.
Environmentally friendly green composites were prepared by blending Wheat gluten (WG) as matrix, dialdehyde starch (DAS) as filler and glycerol as plasticizer followed by compression molding of the mixture at 110 °C. The properties of the WG/DAS composite are compared with those of the WG/native wheat starch (NWS) composites. While tensile strength and strain at break decrease with increasing NWS content in the WG/NWS composites, a small content of DAS could improve tensile strength and strain at break simultaneously in the WG/DAS composites. The WG/DAS composites exhibit reduced moisture absorption in comparison with the WG/NEW composites. Formation of chemical bonding between DAS and WG is beneficial for the dispersion of DAS in the WG matrix and WG/DAS composites exhibit improved mechanical properties and reduced moisture absorption over the WG/NWS composites.  相似文献   

6.
In this study, synthesize hydroxyapatite (HA) suspensions sedimentation was used after usual terms as support for adsorption of heavy metals ions. Thus, the effectiveness of chitosan, produced from shrimp waste, in the flocculation of turbid suspensions resulting from the treatment of water contaminated with heavy metals was studied by adsorption on HA. Different particles sizes of HA were mainly controlled in this work (an average of granule size ranging from 1.6 to 63 μm). The results of Cu2+ and Zn2+ adsorption on HA showed relatively fast kinetics, with removal extent of 88–95 % by varying the initial total metal concentration. High removal rates were obtained for Cu2+. Chitosan was found to be able to eliminate by flocculation more than 98 % of turbid suspensions generated by metals adsorption on HA after only 30 min of sedimentation. Effects of pH and dose of chitosan on the coagulation–flocculation process were also studied. The optimal dose of chitosan was found between 0.2 and 2 mg/L which corresponds to an optimal pH ranging from 6 to 7.  相似文献   

7.
Solid and soft forms of waste polystyrene have been treated with coumarone–indene resin and benzene to produce a new adhesive. The adhesive is prepared from various compositions of polystyrene (13–38 wt%), coumarone-indene resin (5–7%) and benzene (57–80%). Viscosity, peel strength and tensile shear strength of the adhesive is determined by a HAAKE Rotary Viscometer, Lloyd Adhesion Tester and Instron machine, respectively. Rolling ball technique was used to measure the tackiness of the adhesive. Results show that the adhesion property increases with increase in polystyrene composition and coating thickness. This observation is attributed to the increasing wettability of adhesive on the substrate.  相似文献   

8.
含氟废气对农业环境的影响   总被引:5,自引:0,他引:5  
周惠权  陈欣其 《化工环保》1996,16(2):98-101
叙述了某厂氢氟酸生产过程排出的含氟废气对厂区周围水稻和蔬菜的污染及其与气象条件的关系,并提出了防止农业环境氟污染的措施。  相似文献   

9.
Extraction and depolymerisation of chitin and chitosan from shrimp waste material was carried out using fish proteases aided process. A high deproteinization level (80 %) was recorded with an Enzyme/Substrate ratio of 10 U/mg. The demineralization of shrimp waste was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01 %. The degree of N-acetylation, calculated from the 13C CP/MAS-NMR spectrum, was 85 %. The chitin obtained was converted to chitosan by N-deacetylation. X-ray diffraction patterns also indicated two characteristics crystalline peaks approximately at 10° and 20° (2θ). Chitosan was then evaluated in the treatment of unhairing effluents from the tanning industry. A result showed that chitosan as a coagulant has good performance in alkaline pH and at concentration of 0.5 g/L. Within these conditions, chitosan could decrease turbidity value, total suspended solids (89 % at 1.5 g/L), biological oxygen demand (33.3 % at 1.5 g/L) and chemical oxygen demand (58.7 % at 1.5 g/L).  相似文献   

10.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

11.
Journal of Polymers and the Environment - In this study, a biodegradable wheat gluten (WG) film containing calcium chloride and nano silica (WG/CaCl2/SiO2) was prepared and the physicochemical...  相似文献   

12.
将活性污泥培养及驯化后接种于生物滴滤塔中,挂膜启动后处理模拟氯苯废气(简称氯苯废气),考察了生物滴滤塔在挂膜启动阶段及稳定运行阶段的性能。实验结果表明:接种41 d后生物滴滤塔成功挂膜,此时氯苯去除率稳定在90%以上;生物滴滤塔稳定运行阶段,随着进气中氯苯质量浓度由303.82 mg/m3逐渐增至1 489.05 mg/m3,氯苯去除率从85.1%降至70.1%。处理氯苯废气适宜的工艺条件为:空塔停留时间超过45 s,喷淋液流量31.8 mL/min,氯苯负荷23.97~128.01 g/(m3·h)。生物滴滤塔对喷淋液的酸性环境有较好的适应性,喷淋液pH的变化对氯苯去除率无显著影响。  相似文献   

13.

In this study, the wheat gluten film was prepared. Heracleum persicum essence, magnesium oxide nanoparticles and polypyrrole were used to modify the structure of the wheat gluten film. Physicochemical properties of the prepared films such as thickness, solubility, moisture absorption ability, antioxidant properties, and electrical conductivity of the films were investigated. Also, the mechanical, structural and thermal properties of the films were investigated by techniques such as SEM, FTIR, XRD, TGA, DTA and tissue analysis. SEM images showed that the essence and polypyrrole strengthened the gluten film structure and made it more resistant to the passage of gases. FTIR spectra confirmed the electrostatic interactions between gluten and essence and polypyrrole. XRD spectra showed the amorphous structure of gluten film and its composites. The results of thermal analysis showed that polypyrrole greatly increased the thermal resistance of the film and the nanoparticles had little effect on the thermal resistance. Thickness, solubility, moisture content and ability to absorb moisture were further affected by the essential oil. The antioxidant and electrical conductivity of the film was greatly increased in the presence of all three additives of essence, magnesium oxide nanoparticles and polypyrrole. The gluten–essence–MgO–PPy (Glu–E–MgO–PPy) composite film had the most antioxidant properties. Glu–E–MgO–PPy film with important electrical conductivity and antioxidant properties has the potential to be used as an active and intelligent film in the packaging of perishable food products.

  相似文献   

14.
The objective of this study was to evaluate some of the properties of experimental composite panels manufactured from waste packaging materials without using any additional binders. Particles from three types of materials, namely Tetra-Pak, food packaging films (FPEF) as recycled stretch wraps, and candy polyethylene wrappers (CPEW) were used at different ratios in the panels at a target density of 900 kg/m3. Modulus of rupture (MOR), screw holding strength and dimensional stability in the form of thickness swelling and water absorption of the panels were determined according to European (EN) standards. Based on the findings in this work it was determined that the ratio of different raw materials significantly influenced overall properties of the samples. The highest MOR value of 15.5 MPa was determined for the samples having 40 % Tetra-Pak and 60 % CPEW particles. Modulus of rupture values of the panels decreased with decreasing content of CPEW in the samples. The increased content of Tetra-Pak particles in the samples also resulted in reduction of their strength characteristics and dimensional stability. Properties of the samples considered in this work satisfied minimum requirements of typical particleboard stated in EN standards. It appears that such waste material would have potential to be used as raw material for value-added composite production using no adhesive in the panels and, therefore, such panels would possibly create significant ecological impact as green product.  相似文献   

15.
The use of biodegradable polymers is increasingly attracting interest over the last years, since they can reduce the environmental effects related to disposal of traditional plastics and, in general, the use of fossil, non-renewable resources. One of the most promising applications is represented by fibers production. However, the orientation and the crystallinity degrees can significantly affect the mechanical properties. Therefore, it is of interest to investigate on the optimum processing conditions, in order to improve the mechanical properties. In particular, while crystallinity can be slightly modified by the processing, orientation can be significantly improved. In this work, the effects of hot stretching on the mechanical and structural properties of fibers made from two different families of biodegradable blends were investigated. The orientation proved to significantly change the mechanical properties, and it was shown that factors such as the different relaxation times, the different crystallization temperatures and the cooling rate can give opposite effects in the three investigated polymer systems with significant consequences on the mechanical behaviour of the fibers. In particular, the behaviour during fiber production in hot stretching, and the orientation mechanisms were studied and explained on the basis of rheological and thermal properties of the polymers.  相似文献   

16.
Jackfruit starch based biodegradable films containing lysozyme were characterized for their antimicrobial activity, thickness, solubility, water vapor permeability and mechanical properties. The biodegradable films had good appearance and antimicrobial activity against Micrococcus lysodeikticus. The thickness of the biodegradable films were not affected by the variation in pH, but the addition of lysozyme increased the thickness, the thickest films being those with the highest lysozyme concentrations. The variation in pH of the filmogenic solutions affected the solubility of the biodegradable films, water solubility being greatest at pH 7.0 and with the highest lysozyme concentration. The permeability of the biodegradable films was increased by incorporating lysozyme. The lysozyme concentration and pH variation caused changes in the mechanical properties. The addition of 8% lysozyme increased the tensile strength and Young’s modulus for all the pH values studied. With respect to the release of antimicrobial activity, the diffusion of lysozyme was shown to follow Fickian transport mechanism.  相似文献   

17.
Organically modified montmorillonite clays were incorporated at a 5% loading level into film grade of poly-L-lactic acid (PLLA) using a variety of masterbatches based on either semi-crystalline or amorphous poly-(lactic acid), as well as biodegradable aromatic aliphatic polyester. The PLLA masterbatches and compounded formulations were prepared using a twin screw compounding extruder, while the films were prepared using a single screw cast film extruder. The thermal and mechanical properties of the films were examined in order to determine the effect of the clay and different carriers on the polymer–clay interactions. In the optimal case, when a PLLA-based masterbatch was used, the tensile modulus increased by 30%, elongation increased by 40%, and the cold crystallization temperature decreased by 15 °C, compared to neat PLLA. The properties improvement of PLLA films containing nano clays demonstrated the possibility to extend the range of biodegradable film applications, especially in the field of packaging.  相似文献   

18.
Chitosan nano-composite film crosslinked by citric acid and with glycerol as plasticizer and MgO as antibacterial agent was prepared by casting method. MgO nanoparticles were synthesized via calcination method in furnace at 500 °C for 4 h and characterized by X-ray diffraction and transmission electron microscope. The chitosan nano-composite film with composition chitosan/citric/glycerol/magnesium oxide (1 wt%:1 wt%:75 vol%:10 wt%) has high mechanical properties than other films. The effects of different irradiation doses on the mechanical, thermal and antibacterial activity were investigated. The tensile strength enhanced by increasing irradiation dose up to 10 kGy and the elongation negligible changed as irradiation dose increased. The thermal stability slightly increased up to dose 2.5 kGy then decreased with dose increment. The antimicrobial activity film was studied against white mulberry-borne bacterial pathogens either Gram positive or Gram negative bacteria and has positive impact of gamma irradiation on the antimicrobial activity. The use of the selected chitosan nano-composite film which irradiated by dose of 2.5 kGy and has magnesium oxide of average particle size 54.3 nm as new packaging materials found to improve storage quality and shelf-life of mulberry fruit.  相似文献   

19.
侯纪蓉 《化工环保》1999,19(5):287-290
介绍了光气尾气的排放状况,处理光气尾气用SN-7501催化剂的最佳使用条件和光气水解塔的设计要点。在合适的温度和足够的停留时间条件下,不同浓度的光气尾气经催化水解处理后均可达到国家排放标准。  相似文献   

20.
Most native polymers used in processing and application technologies are admittedly disposable from the environment in a biologic manner, but products possess low mechanical strength. One of the paths to increasing this attribute (if feasible) is their cross-linking, which may, however, affect their readiness to biodegradation. In the presented work this condition was observed on the example of waste protein (Hykol B) cross-linking by means of glutardialdehyde and glyoxal. Degree and course of cross-linking were determined through impedance spectroscopy. The objective of this work also was to obtain data for constructing a sensor capable of following the cross-linking course in real time, for potential industrial application of Hykol in continuous production. Impedance spectroscopy proved to be applicable even to this kind of material marked by considerable water content and exhibiting relatively high electric conductivity; so far it had been used only for materials of low conductivity. An aqueous environment inoculated with digested anaerobic sludge from a municipal wastewater treatment plant was selected for modeling anaerobic conditions. The relation was studied between cross-linking degree given by content of cross-linking agent (determined by impedance spectroscopy) and biodegradation degree under anaerobic conditions. It was confirmed that network density as given by quantity of added agent not only reduced breakdown degree but also slowed the course of the process. This fact is particularly obvious with cross-linking by means of glyoxal; network density is thus dependent on type of employed substance, which affect type and structure of created network. That not merely forms an obstacle during polymer swelling and dissolution but also prevents access of bacteria to source of metabolized organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号