首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The aim of this work was to develop biodegradable films based on blends of gelatin and poly (vinyl alcohol) (PVA), without a plasticizer. Firstly, the effect of five types of PVA with different degree of hydrolysis (DH) on the physical properties of films elaborated with blends containing 23.1% PVA was studied. One PVA type was then chosen for the study of the effect of the PVA concentration on the mechanical properties, color, opacity, gloss, and water solubility of the films. The five types of PVA studied allowed for films with different characteristics, but with no direct relationship with the DH of the PVA. Therefore, the PVA Celvol®418 with a DH = 91.8% was chosen for the second part, because they produced films with greater tensile strength. The PVA concentration affected all studied properties of films. These results could be explained by the results of the DSC and FTIR analyses, which showed that some interactions between the gelatin and the PVA occurred depending on the PVA concentration, affecting the crystallinity of the films.  相似文献   

2.
The increasing use of plastics in packaging materials leads to growing amounts of plastic waste. Recycling material is generally regarded as advantageous. But in fact very few products are made from plastic waste, partly this can be explained by that little is known about the recycling process and the properties of collected materials. There is a need for injection moulding grades of recycled polyethylene, while large amounts of extrusion grades are available from packaging waste. A controlled way of de-branching or partly degrading PE would be desirable. Peroxides are commonly used to crosslink polyolefins, but under certain conditions a chain scission reaction occur. Another problem encountered with recycling of polyethylene are the poor miscibility of low amounts contaminations, i. e. polypropylene. A compatibilizer can improve properties of such polymer blends, in this work EPDM is used as compatibilzer. Studies of mechanical properties and viscosity measurements show that it is possible to partly degrade PE with peroxide exposing it to high temperature and oxygen. The properties of PE/PP blends were improved with EPDM as compatibilizer.  相似文献   

3.
Blends of water—soluble polymers based on Poly vinyl alcohol (PVA) and Polyethylene glycol (PEG) have been prepared by the solution casting technique. The effect of various doses of γ-radiation on the structural properties of PVA/PEG polymer blends with all its compositions has been investigated. From the visual observation of all the blend compositions, it was found that, the best compatibility of the blend is up to 40% PVA/60%PEG. The structure–Property behavior of all the prepared blends before and after γ-irradiation was investigated by IR Spectroscopy, thermogravimetric analysis (TGA), mechanical properties and Scanning electron microscope (SEM). The gel content and the swelling behavior of the PVA/PEG blends were investigated. It was found that the gel content increases with increasing irradiation dose and PVA concentration in the blend. Swelling percent increased as the composition of PEG increased in the blend. The results obtained by FTIR analysis and SEM confirm the existence of possible interaction between PVA and PEG homopolymers. TGA of PVA/PEG blend, before and after γ-irradiation, showed that the unirradiated and irradiated PVA/PEG blends are more stable against thermal decomposition than pure PVA. Improvement in tensile mechanical properties of PVA/PEG blends was occurred.  相似文献   

4.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

5.
Formulations of low cost bio-based oxo-biodegradable polyethylene (PE)/Lignin hybrid polymeric composites were prepared by using ethylene/vinyl acetate (EVA) copolymer as compatibilizer and a transition metal salt as oxo-biodegradation promoter. The hybrid composites and relevant Lignin-free blends were formulated by following a statistical mixture design. The effect of Lignin, pro-degradant additive, EVA copolymer and their compatibility with the PE continuous matrix, was evaluated by means of structural features by attenuated total reflectance, morphological by scanning electron microscopy, thermal by differential scanning calorimetry and thermo-gravimetric analysis and mechanical properties by an Instron Machine. The results attained in this study, regarding especially the thermal and mechanical properties, suggest that bio-based oxo-biodegradable hybrid composites offer an interesting way to produce low cost bio-based materials with fairly enhanced properties. The moderate-low cost hybrid materials appear to be attractive for their potential in the mercantile area of commodities including: packaging, personal care products, agricultural mulch films and disposable items. This will constitute a novel added-value contribution aimed at mitigating the environmental burden caused by plastic waste items improperly abandoned in the environment.  相似文献   

6.
We report on the possibility of obtaining organic polymeric matrixes allowing the development of new high performance fire-resistant products by recycling downsized thermostable waste materials. Phenolic resins have been used as binders for recycled waste. Furthermore, considering that reinforced plastic triturations have superior properties (chemical, mechanical, water resistance, etc.) to wood agglomerates, significant advantages over conventional materials are anticipated. In summary, we propose a viable solution to some of the known problems caused by the consumption of wood and to the needs of strengthened plastic processing engineering. Using resins as a binder, several fire-resistant prototypes were prepared from polyester waste, and their mechanical properties, thermal stability, and fire-resistant properties were analyzed.  相似文献   

7.
Several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers were prepared and characterized. Cohesive and flexible cast films were obtained by blending lignocellulosic fibers derived from orange waste and PVA with or without cornstarch. Films were evaluated for their thermal stability, water permeability and biodegradation properties. Thermogravimetric analysis (TGA) indicated the suitability of formulations for melt processing, and for application as mulch films in fields at much higher temperatures. Composite films were permeable to water, but at the same time able to maintain consistency and composition upon drying. Chemical crosslinking of starch, fiber and PVA, all hydroxyl functionalized polymers, by hexamethoxymethylmelamine (HMMM) improved water resistance in films. Films generally biodegraded within 30 days in soil, achieving between 50–80% mineralization. Both starch and lignocellulosic fiber degraded much more rapidly than PVA. Interestingly, addition of fiber to formulations enhanced the PVA degradation.  相似文献   

8.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

9.
Three series of polypropylene and waste tire dust (PP/WTD) blends using three different WTD sizes were prepared, compression-molded and cut into dumbbells. The specimens were exposed to natural weathering in the northern part of Malaysia for a period of 6 months. The results show that at the same blend composition, blends with fine WTD size exhibit higher mechanical properties than that of blends with coarse WTD after exposure to natural weathering. Regardless of WTD size, the retention of tensile strength and elongation at break, Eb increases with the increase in WTD content. From the exposed surface morphology, it is apparent that the blends with fine WTD and WTD-rich blends were able to withstand weathering better than blends with coarse WTD and PP-rich blends. The DSC thermograms suggest that the overall drop in melting temperature (Tm) of the exposed blends decreases as the WTD content increases.  相似文献   

10.
Improving biodegradability of PVA/starch blends is a reality already documented by a number of works. Admittedly, mechanical properties of products (for example, tensile strength) are somewhat worse, but suitable composition optimizing or chemical modifying of starch may eliminate the problem to a large degree. This work is an attempt to find another potential effect influencing biodegradability, that of technological procedure for producing films from these blends on an extruder. The procedure with a so-called pre-extrusion step (two-stage) and dry-blend (single-stage) produced blends of slightest differences in achieved biodegradability (virtually within limits of experimental error) in aerobic (76 vs. 79%) as well as anaerobic breakdown (48 vs. 52%). Conversely, morphological analysis exhibited superior homogeneity of films prepared by the two-stage process; their tensile strength was also higher.  相似文献   

11.
Wang  Jun  Yang  Le  Li  Xiaolong  Luo  Zhu  Li  Jianjun  Xia  Xiaosong  Linghu  Changkai 《Journal of Polymers and the Environment》2022,30(3):1127-1140

Incompatible polypropylene (PP) and polyethylene (PE) are difficult to separate in mixed recycling streams such as waste plastic packaging, which makes polyolefin mixtures unsuitable for high-quality products. In this work, based on the free radical branching reaction, a co-branching reaction of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) blends was carried out in the presence of the peroxide, free radical regulator and multifunctional acrylate monomer, and a star-like long-chain branching (LCB) copolymer was obtained. The effect of in situ compatibilization on the structures and mechanical properties of iPP/HDPE was investigated, and the compatibilization mechanism was discussed. Results showed that the mechanical properties of the modified blends were largely improved, and efficient in-situ compatibilization of iPP and HDPE could be taken place in a wide process window. Moreover, the sizes of the dispersed phase in the modified blends were clearly decreased, and the interfacial thickness increased. Compared with the pure iPP/HDPE blend, the initial crystallization temperature of iPP in the modified iPP/HDPE blend was increased, and long branched chains of the LCB copolymers were physically entangled with the chemical identical homopolymers or even participated in the crystallization of iPP and HDPE. Thanks to the in situ compatibilization strategy, the compatibility of iPP/HDPE was significantly improved.

  相似文献   

12.
Polyvinyl alcohol (PVA) and starch are both biodegradable polymers. These two polymers can be prepared as biodegradable plastics that are emerging as one of the environmental friendly materials available now. In this study, after reacting with sodium trimetaphosphate (STMP), modified corn starch was blended with PVA in different ratios by a barbender. Test samples were prepared for mechanical and thermal properties measurements. The surface roughness and morphology of fractured surface of the samples were observed by an atomic force microscopy (AFM) and scanning electron microscope (SEM) measurements. Aqueous degradation by enzyme, water absorption and biodegradability behavior were evaluated for the degradability. The biodegradability of these materials was followed by bio-reactivity kinetics models. Results showed that the addition of modified starch could enhance its water uptake. With an addition of 20 wt% of modified starch, the blend had a maximum weight loss during enzymatic degradation. It was found that the degradability was enhanced with the addition of the starch. Analyzing the results of the biodegradability based on the kinetic models, the growth rate of the microorganism was found to be increasing with the increase of the content of starch in the PVA/starch blends in the first order reaction fashion. In our biodegradability analysis, i.e., based on the China national standards (CNS) 14432 regulations, we estimated the decomposition behavior based on the mentioned first order reaction. We found that the PVA/starch blends would take 32.47, 16.20 and 12.47 years to degrade by 70% as their starch content 0, 20 and 40 wt%, respectively.  相似文献   

13.
The common biodegradable properties of polymer make them an excellent pair for blending, and the water solubility of polyvinyl alcohol (PVA) makes it easy to mix evenly with the starch. In this study, PVAs with different molecular weights were blended with various compositions of cross-linked starch (CLS) to explore the effects of molecular weight of PVA on the biodegradable characteristics of the PVA/starch blends. Comparing the biodegradability of all the various PVA/starch blends, a PVA was singled out from the PVA/starch blends of higher biodegradability. Further, the chosen PVA was then blended with the acid-modified starch (AMS) to systematically investigate the effects of the modified processing of starch on the biodegradable characteristics of the PVA/starch blends. Differential scanning calorimetry (DSC) analysis of PVA and PVA/starch specimens reveal that the Tm values of PVA/starch specimens reduce gradually as their CLS or AMS contents increase. After the CLS is blended in PVAs of different molecular weights, the tensile strength (??f) and elongation at break (??f) values of (P100S0)G20M1 specimen increase and simultaneously reduce, respectively, as their molecular weights of PVA increase from about 80,000 (PVABF-17) to 120,000 (PVABF-26). The ??f and ??f values of the PVA/modified-starch blends decrease with an increase in the modified starch contents. The ??f values of the PVA/AMS specimens decrease with an increase in the concentrations of hydrochloric acid. Comparing the ??f values of the PVA/CLS specimens with those of the PVA/AMS specimens, the ??f values of the PVA/CLS specimens are better than those of the PVA/AMS specimens. On the contrary, the ??f values of the PVA/AMS specimens are better than those of the PVA/CLS specimens. According to the biodegradability of all the PVA/starch blends, PVA with higher molecular weights displays higher biodegradability. The biodegradability of the PVA/modified-starch blends increase as the modified starch contents of the PVA/modified-starch blends increase. As evidenced by the results of the biodegradability test, the biodegradability of the PVA/modified-starch blends, therein PVA is blended with 1N AMS, shows better biodegradability. The result of bio-reaction kinetics experiment can evaluate the decomposition tendency of the PVA/starch blends up to any biodegradable rate under ambient environment. Using the kinetic model of the first order reaction, it is estimated that 16.20?years and 12.47?years will be needed for the PVABF-17/starch blends, containing 20 and 40% of CLS respectively, to be degraded up to 70% under ambient environment. In addition, it is 1.68?years for the PVABF-26 blends with the 40% 2N AMS under decomposition environment while it is 1.94?years for the 40% 1N AMS. Overall, the decomposition potential of PVA/AMS specimens is better than PVA/CLS specimens. Furthermore, the 1N(26P60AS40)100G20M1 specimen is coincidence the biodegradable material criteria of Environmental Protection Administration (EPA) of Taiwan.  相似文献   

14.
The world’s plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry.  相似文献   

15.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

16.
This work focused on anaerobic biodegradation of blends composed of glycerol-plasticized polyvinyl alcohol (PVA) and biopolymer (starch, gellan, xanthan) in an aqueous environment, after inoculation with digested activated sludge from a municipal wastewater treatment plant. Glycerol degradability is comparable to degradability of used modifying agents. Modifying agents added in the 20–40 wt% range proportionally increased biodegradation degree (Dt) calculated from balance of transformed carbon in the system. Biodegradation degree of polysaccharides and glycerol attained 95% and over. For PVA it was only 6.5% (in breakdown times up to 500 h). Content of polysaccharides favorably affects biodegradation degree of polyvinyl alcohol blends, but at the expense of reduced mechanical properties of resultant products.  相似文献   

17.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   

18.
3D printing has received lots of attention due to its limitless potential and advantages in comparison to traditional manufacturing processes. This study focuses on the most popular type of home 3D printers, namely fused filament fabrication (FFF) printers, which use plastic filaments as the feedstock. The rather high material cost and large amount of plastic waste generated by FFF 3D printers have driven the need for plastic filaments produced from recycled plastic waste. This study evaluates, in terms of physical characterization, the feasibility of using recycled high-density polyethylene (HDPE), one of the most commonly used plastics, as the feedstock for 3D printers, in comparison with the common acrylonitrile butadiene styrene plastic pellets. In-house extrusion using recycled HDPE pellets and flakes is possible. The diameter consistency and extrusion rate results, along with other physical characterization results, including differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and water absorption, suggest that making filaments from recycled HDPE pellets is a viable option, as the obtained filament has favorable water rejection and comparable extrusion rate and thermal stability. Existing methods for overcoming the warping and adhesion problems in 3D printing with HDPE were also reviewed. In order to increase the market competitiveness of waste-derived filaments, optimization of the extrusion process, studies on the mechanical and aging properties, and development of a standard characterization methodology and database are crucial.  相似文献   

19.
Reaction kinetics at various temperatures for pyrolysis of mixtures of plastic waste [polyethylene(PE) and polystyrene(PS)] are modelled in terms of five types of pyrolysis reaction. The model development is based on the assumption that as plastic wastes are heated in a non-reactive environment they are decomposed homogeneously to various products of gas, oil and char by a first-order rate, irreversible reaction and isothermal condition. Among the five models, the type II model in which the activated polymer exists as an intermediate product is the most accurate in predicting the pyrolysis products of pure PE or pure PS. Also, for mixtures of plastics both type II and IV models can be used to explain the composition of pyrolysis products. Furthermore, from the analysis of variance (ANOVA), the mixing ratio and temperature are shown to be the parameters that have the greatest effect on the pyrolysis reaction of polymer waste mixture. The pyrolysis reaction time for the maximum oil production from PE-PS mixtures is shorter than for PE alone and approaches that of PS alone. Oil production increases with increase of PS content. The optimal temperature for maximum oil production is 600°C for the pyrolysis of 2:8, 5:5 and 1:0 mixtures (w/w) of PE and PS. Oil production for PS alone is constant when the pyrolysis is above 600°C.  相似文献   

20.
Materials recovered from solid waste in Bangkok are mainly glass bottles, paper and paper products, plastic products and metals. Materials are separated at three different stages of the collection process: at the source, prior to collection; by the crews of the collection vehicle; and by the scavengers at the dump site. The total daily tonnage of recyclable garbage collected at the source by the waste pickers is estimated at 286 tonnes, about 5% of the garbage collected by the city. There are small scale recycling shops (SSR) located around the main disposal sites where collected materials are sold by the collection crews and the scavengers. The quantity of materials delivered to the SSR shops by the collection crew vary between 1-6 tonnes per day. The amount of materials recovered by the scavengers (at the dump site) varies between 50-150 kg person-1 day-1. Therefore around 7.5% of the solid waste is recycled. In Bangkok both formal and informal sectors manufacture paper pulp, cardboard boxes and magazines from the recyclable paper. Paper products which account for 55% of the total waste stream are considered as the largest "product group" in the municipal solid waste. Recyclable glass (1-3% of the total waste stream) or cullet is used to manufacture plain glasses or cups. Plastics constitute about 10-15% of the waste stream. The benefit/cost ratios of production of most of these industries were reported to be higher than 1.5. In order to enhance recycling, legislative measures need to be introduced and enforced. In Thailand, there is, however, no law concerning recycling. There is no incentive for the consumer to separate solid waste for recycling, as the prices of waste in Bangkok are low and inconsistent. Therefore the pricing system should be more organized for recycling to be more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号