首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research work aims to investigate the synergistic effect of pozzolanic materials such as oil palm ash (OPA) and oil palm empty fruit bunch (OPEFB) on the developed hybrid polymer composites. The OPEFB and OPA fillers of different particle sizes (250, 150, and 75 µm) were mixed at OPEFB:OPA ratios of (0:100; 20:80; 40:60; 60:40; 80:20 and 100:0) and incorporated into an unsaturated polyester resin. Furthermore, both mechanical and morphological properties of the composites were analyzed and it was found that tensile, flexural, and impact properties were significantly improved at OPEFB:OPA of 75 µm particle size hybridization of the polymer. The increase of OPEFB to OPA filler ratio up to 80:20 significantly improved the tensile properties of the composites while 40:60 ratio of 75 µm gave the optimum filler ratio to obtain the highest flexural and impact properties of the composites among all studied samples. Scanning electron micrograph images showed strong particle dispersion of the embedded fillers with resin which explained the excellent mechanical strength enhancement of the composite.  相似文献   

2.
In this research, hybrid composite materials were prepared from combination of oil palm Empty fruit bunches (EFB) fibre and jute fibre as reinforcement, epoxy as polymer matrix. This study intended to investigate the effect of jute fiber hybridization and different layering pattern on the physical properties of oil palm EFB-Epoxy composites. Water absorption and thickness swelling test reveal that hybrid composite shows a moderate water absorption which is 11.20% for hybrid EFB/Jute/EFB composite and 6.08% for hybrid Jute/EFB/Jute composite. The thickness swelling and water absorption of the hybrid composites slightly increased as the layering pattern of hybrid composites changed. Hybrid composites are more water resistance and dimensional stable compare to the pure EFB composites. This is attributed to the more hydrophilic nature of EFB composites. Hybridization of oil palm EFB composites with jute fibres can improve the dimensional stability and density of pure EFB and Jute fibre reinforced composites has higher density of 1.2 g/cm3 compared to all other composites.  相似文献   

3.
Nanocrystalline cellulose (NCC) was isolated from a totally chlorine free (TCF) bleached oil palm empty fruit bunch (OPEFB) pulp via acid hydrolysis using a 58 % sulfuric acid concentration and ultrasonic treatment. The effects of acid concentration and hydrolysis time were investigated. Characterization of OPEFB–NCC was carried out using TEM, FTIR, 13C-NMR, XRD, zeta potential and TGA. The optimal hydrolysis time was 80 min as indicated by the leveling off of the OPEFB–NCC dimensions (length 150 nm and diameter 6.5 nm) with no significant loss of crystallinity at this point. The presence of a shoulder peak at 1231 cm?1 (assigned to a sulfate group) in the FTIR spectrum of NCC is indicative of a successful esterification. This is further corroborated by the 13C-NMR analysis whereby the distinct C4 amorphous and crystalline peaks present in OPEFB–TCF pulp had almost disappeared and the cluster of signals for C2, C3, C5, and a well separated signal of C6 had merged into one single peak in the OPEFB–NCC sample. These observations allude to most of the amorphous region having been removed and to the strong possibility of sulfonation having not only occurred on the C6, but also on C2 and C3. OPEFB–NCC isolated over shorter hydrolysis time was more thermally stable; however, the char fraction decreases with hydrolysis time despite having a higher zeta potential. The results of this investigation demonstrate that NCC can be produced from pulp made by chlorine free environmentally benign processes with ensuing savings in energy and chemicals.  相似文献   

4.
WEEE recycling: Pyrolysis of fire retardant model polymers   总被引:6,自引:0,他引:6  
Pyrolysis treatments of model polymers were made with the aim of studying the recycling of wastes from electronic, electric equipment containing brominated flame retardants. Pyrolysis of flame retarded high impact polystyrene and epoxy resins were made both in flow and closed systems. Products of pyrolysis were analysed with FT-IR spectroscopy and GC-MS and the evolution of bromine was followed with a bromine ion specific electrode. The effect of alkali on pyrolysis was also studied demonstrating, as far epoxy resin is concerned, to be effective on decreasing bromine content in oil and volatile products leading to the recovery of bromine from the residue by washing. The alkali treatment was shown to be less effective in styrenic polymers containing brominated flame retardants.  相似文献   

5.
The insulation material of electronic devices should offers high thermal conductivity whilst retaining suitable mechanical properties. Epoxy resin is an example of a material that is commonly used by industry for electronic insulation, despite the fact that neither the thermal conductivity nor the mechanical properties are particularly satisfying. These properties can be enhanced by incorporating filler, with silica flour representing the most popular filler. An economically appealing solution is to replace silica flour with fly ash as filler material, however it must be remembered that compatibility of fly ash and epoxy resin is not ideal. In order to improve the coupling between these two materials, fly ash particles covered with [3-(2-Aminoethylamino)propyl]trimethoxysilane were obtained with six different conditions of the silanization process, where the amount of silane, the temperature and the time of the reaction were changed. The presence of the silane layer was confirmed via Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis and Scanning Electron Microscopy. The mechanical properties, including tensile strength, Young Modulus and fracture toughness, as well as the thermal conductivity of the final samples were investigated. In the case of composites with silanized fillers, all of the mechanical properties were improved, and an enhancement of thermal conductivity was observed for several composites. Moreover, the differences in coupling between the silanized fly ash and the untreated fly ash, and the epoxy matrix were precisely recorded by means of SEM. The presented studies confirm that an effective silanization process can significantly improve the properties of composites, while also verifying the usefulness of waste material. The results highlight that fly ash may be utilized to create a more economically affordable insulation material.  相似文献   

6.
Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.  相似文献   

7.
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.  相似文献   

8.
The purpose of this study was to understand how the montmorillonite (MMT) nanoclay influences physical and mechanical properties of thermoplastic starch (TPS), which was produced by a conventional extrusion procedure. MMT nanoclay was added at 0, 4, and 8 % (w/w) concentrations. Transmission electron microscopy (TEM) showed most MMT platelets existed in tactoid structure in the starch matrix. In addition, FTIR spectra indicated TPS/MMT nanocomposites kept chemically stable after the extrusion. Tensile strength (TS) was about 7.0 MPa, while elongation-at-break (E) and elastic modulus (EM) were about 52 % and 32–41 MPa, respectively. Moisture sorption behaviour of the samples was well described by GAB and BET models. Thermal property tests exhibited the glass transition temperature (T g ) of the nanocomposites decreased with increasing MMT from 0 to 8 %, indicating MMT nanoclay had a plasticization effect.  相似文献   

9.
This study examined biocomposites based on low-density polyethylene (LDPE) and lignocellulosic fillers [wood flour (WF) and oil flax straw (FS)] selecting four size fractions of each lignocellulosic material as fillers for the composites. The primary aim was to evaluate the influence of fraction size on the composites’ basic properties; to accomplish this, the composites’ mechanical properties, thermal oxidation, thermophysical characteristics, and water absorption capacity were examined. Then microphotographs of the samples were created and length-to-diameter (L/D) ratio of the fillers was calculated, finding that the L/D ratio increased with increasing particle size. The particle size influenced the oxidative degradation and water absorption processes in composites with oil flax but not in those with WF. Biodegradation tests performed on the recovered soil found that the loss of mass in composites based on LDPE and FS was higher than in the same composites with WF. Moreover, at the initial stage of composting, the biodegradation rate correlated with the size of filler particles (i.e., the larger the particles, the higher the degradation rate of the biocomposite).  相似文献   

10.
This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.  相似文献   

11.
Polyurethane-based nanocomposites were prepared and their dielectric properties were characterized. Polyurethane (PU) composites were prepared with different organoclay content (1, 3, 5, and 10 wt% for all cases). The composites included quaternary ammonium salts such as 1-methyl-di-octyl-1 phenyl ammonium iodide (QAS-1), 1-methyl-di-nonyl-1 phenyl ammonium iodide (QAS-2), and 1-methyl-di-dodecyl-1 phenyl ammonium iodide (QAS-3) which were newly synthesized for modification of Na+-montmorillonite. Addition of aluminum silicate enhanced the dielectric properties at a constant concentration. Dielectric constants of nanocomposites compounded with 3 %- and 5 %-organoclay were close in value. The characterization of PU/organoclay composites was carried out using Fourier transform infrared and X-ray diffraction.  相似文献   

12.
The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, X-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared with carbon black. Uniaxial deformation of natural rubber (NR) composites indicate the composites reinforced with the porous carbon from coconut shell have higher tensile moduli at the same elongation ratio than the composites reinforced with wood carbon. 40 % coconut shell composite showed a fivefold increase in tensile modulus compared to NR. Polymer–filler interactions were studied with frequency dependent shear modulus, swelling experiments and dynamic strain sweep experiments. Both linear and non-linear viscoelastic properties indicate the polymer–filler interactions are similar between coconut shell carbon and wood carbon reinforced composites. The swelling experiments, however, showed that the polymer–filler interaction is greater in the composites reinforced with coconut shell instead of wood carbon.  相似文献   

13.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

14.
A consortium of microorganisms from oil polluted wastewater sample was cultivated to promote polyhydroxyalkanoate (PHA) accumulation before subjecting the mixed cultures to sucrose density gradient ultracentrifugation. This resulted in the fractionation of the bacterial cells according to their physical features such as size, morphology and/or densities. An isolate was identified as Burkholderia sp. USM (JCM15050), which was capable of converting palm oil products [crude palm kernel oil (CPKO), palm olein (PO), palm kernel acid oil (PKAO), palm stearin (PS), crude palm oil (CPO), palm acid oil (PAO) and palm fatty acid distillate (PFAD)], fatty acids and various glycerol by-products into poly(3-hydroxybutyrate) [P(3HB)]. Up to 70 and 60 wt% of P(3HB) could be obtained when 0.5%(v/v) CPKO and glycerol was fed, respectively. Among the various fatty acids tested, lauric acid followed by oleic acid and myristic acid gave the best cell growth and PHA accumulation. Compared to Cupriavidus necator H16, the present isolate showed better ability to grow on and produce PHA from various glycerol by-products generated by the palm oil industry. This study demonstrated for the first time an isolate that has the potential to utilize palm oil and glycerol derivatives for the biosynthesis of PHA.  相似文献   

15.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   

16.
In the first part of this work, composites based on polypropylene (PP) and maple wood flour (MF) were prepared by melt compounding using twin-screw extrusion followed by compression molding. The morphological and mechanical properties of the composites were analyzed for three samples: PP, MF/PP and MF/PP containing maleic anhydride grafted polypropylene (MAPP) as coupling agent. The results showed that MF/PP composites have improved mechanical properties, especially tensile modulus (+33 %), with only 8 % increase in density. The addition of MAPP further improved the mechanical properties, in particular tensile modulus (up to 51 %), which could be related to better fiber/matrix adhesion. In the second step, nano crystalline cellulose (NCC) was added to all samples to produce NCC-MF/PP hybrid composites. From the mechanical analysis performed, the hybrid composites with MAPP have improved properties, especially tensile (+53 %) and flexural (+40 %) moduli. These results confirmed that multi-scale hybrid NCC-MF composites can substantially improve the mechanical properties of polyolefins with limited increase in density (14 %) leading to high specific properties.  相似文献   

17.
Biochemical sludge (BS), generated in the waste water treatment of paper mills, was pretreated by enzyme hydrolysis. The effect and action mechanism of the enzymatic treatment on the properties of polyvinyl chloride (PVC) matrix composites with BS were discussed. Results showed that when the filler content was 30 wt%, the tensile strength of the PVC composites filled with BS and its modified products which were pretreated by laccase, cellulase and hemicellulase can be increased by 38.64, 67.4, 63.5 and 66.3% than the PVC composite filled with calcium carbonate. When the dosage of filler was 40 wt%, the elastic modulus of PVC composites filled with BS and its above three modified products decreased by 53.3, 52.3, 50.0 and 46.3%, respectively. Meanwhile, the thermal stability of PVC composites can also be improved at the temperature of over 340 °C. It can be concluded that the enzyme pretreatment can improve the application performance of BS usage in PVC matrix composites.  相似文献   

18.
The increasing production of computers, the progress in their performance, and the shorter time between innovation and production has led to increasing numbers of obsolete products. It has thus become necessary to recover some materials from old computers and to protect the environment from a new type of pollution. Such recycling is difficult because of the diversity of polymeric materials used, e.g., thermoplastics (polystyrene or acrylonitrile-butadiene-styrene) and thermosets (epoxy resins), and the relatively high levels of flame retardants (halogen- and nitrogen-containing compounds) added during production. Pyrolysis seems to be a suitable way to recover materials and energy from such waste without component separation if an efficient method for reducing toxic compounds can be applied. In this study, the pyrolysis of plastic and thermoset fractions (keyboards, casings, printed circuit boards, and mixtures thereof) of used computers was studied by thermogravimetry and batch reactor pyrolysis. The degradation products were separated into three fractions, solid, liquid, and gaseous, each of them being characterized by suitable methods such as gas chromatography (GC-MSD, gas chromatography-mass spectrometry detection; GC-AED, gas chromatography-atomic emission detection), infrared (FT-IR) and 1H-NMR (nuclear magnetic resonanace) spectroscopy, and elemental analysis. It has been established that most of the halogens, nitrogen, and sulfur is concentrated in the residue. However, the elimination of hazardous toxic compounds, mainly those containing bromine, is necessary before being able to safely use the pyrolysis oils as fuels or in refinery or petrochemical industry flows.  相似文献   

19.
Lignins from the spent pulping liquor were normally acquired as waste product of pulp and paper mills. The possibilities of utilizing kraft lignin have yet been developed for commercial innovation. The objectives of this research are to recovery and utilization of lignin from black liquor of oil palm empty fruit bunches (OPEFBs). Kraft lignins from the OPEFBs black liquor were recovered by acidification procedure. They were precipitated at pH 4, 3, and 2 in order that determine the optimum pH for isolation. It can be clearly seen that the best condition of lignin precipitation was at pH 3. It offered the highest yield and purity. The kraft lignin and agarose were utilized as the crude material for the production of lignin–agarose hydrogel. Lignin–agarose hydrogel could be prepared by using epichlorohydrin as the cross-linking agent. The cross-linking occurrence was recognized by FTIR. Physical and chemical properties of hydrogel were investigated. Gel strength of lignin–agarose hydrogel was characterized by texture personal analysis. The results demonstrated that the gel strength increased with increasing of lignin and epichlorohydrin (ECH) in agarose solutions. 5% lignin, 5% agarose and 10 mL ECH contributed the best gel formation and the great mechanical properties. The effect of cross-linking condition on the gel properties, for example, gel hardness and fracturability, was examined.  相似文献   

20.
The aim of this paper was to investigate the effect of recycled polypropylene (PP) on the rheological, mechanical and thermal properties of wood flour polypropylene composites. Beforehand, the influence of wood flour treated with a coupling agent on the rheological behaviour had been looked at. By analysing moduli and viscosity curves and studying the thermal and mechanical properties of samples with 10% filler it was possible to see that the recycled PP that was added change in either its physical properties or its rheology. In the other wood plastic composites (WPC) studied, slight changes in the rheology behaviour were observed. However, the same processing parameters may be used with and without recycled PP. Recycled PP is appropriate for these kinds of composites to maintain the optimal rheological properties that make it easier to process the material by extrusion. Furthermore, it is also possible to maintain the thermal and mechanical properties in comparison with the behaviour of virgin PP/wood flour composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号