首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.  相似文献   

2.
Journal of Polymers and the Environment - This study focused on improving the toughness properties of poly(lactic acid) (PLA) by blending with either epoxidized natural rubber (ENR) or ENR plus...  相似文献   

3.
We identified a biodegrading microorganism of polyamide (nylon) 4, a linear polymer of γ-aminobutyric acid (GABA). From activated sludge, the biodegrading bacteria strains of Pseudomonas sp. were isolated and identified by their taxonomic characteristics and nucleotide sequences of 16S rDNA. One strain, ND-11, was grown on a minimal medium containing polyamide 4 (PA4) as the sole carbon source. The strain produced GABA as a degradation intermediate, as identified by analyzing the NMR spectra of degraded products. The culture supernatant of strain ND-11 degraded the emulsified PA4 completely within one day. These results suggest that the ND-11 strain degraded PA4 using its extracellular enzymes to hydrolyze amide bonds.  相似文献   

4.
As an attempt to synthesize new biodegradable polymers from renewable cellulose resources, melt polycondensation of 5-hydroxylevulinic acid (5-HLA) was reported for the first time. The resulting product, poly(5-hydroxylevulinic acid) (PHLA), was synthesized and characterized with GPC, FTIR, 1H NMR and DSC. The in vitro degradation behaviors in phosphate-buffered saline (PBS) and in deionized water (DW) were also examined. The molecular weight of PHLA is not high (several 1,000s), but it possesses unordinary high glass transition temperature (as high as 120 °C). This is very different from existing aliphatic polyesters that usually have T gs lower than 60 °C. The high T g is attributed to the formation of inter- and/or intramolecular hydrogen bonds due to a characteristic keto–enol tautomerism equilibrium in the polymer structure. PHLA readily degraded hydrolytically in aqueous media.  相似文献   

5.
6.
Novel biodegradable thermoplastic elastomer based on epoxidized natural rubber (ENR) and poly(butylene succinate) (PBS) blend was prepared by a simple blend technique. Influence of blend ratios of ENR and PBS on morphological, mechanical, thermal and biodegradable properties were investigated. In addition, chemical interaction between ENR and PBS molecules was evaluated by means of the rheological properties and infrared spectroscopy. Furthermore, the phase inversion behavior of ENR/PBS blend was predicted by different empirical and semi-empirical models including Utracki, Paul and Barlow, Steinmann and Gergen models. It was found that the co-continuous phase morphology was observed in the blend with ENR/PBS about 58/42 wt% which is in good agreement with the model of Steinmann. This correlates well to morphological and mechanical properties together with degree of crystallinity of PBS in the blends. In addition, the biodegradability was characterized by soil burial test after 1, 3 and 9 months and found that the biodegradable ENR/PBS blends with optimum mechanical and biodegradability were successfully prepared.  相似文献   

7.
Viscosity, peel and shear strength of epoxidized natural rubber (ENR)-based pressure-sensitive adhesive was studied by using hybrid tackifiers consisting of a mixture of coumarone-indene resin and petro resin. The coumarone-indene resin concentration was fixed at 40 parts per hundred parts of rubber (phr). The concentration of petro resin, however, was varied from 20 to 80 phr. Toluene and polyethylene terephthalate (PET) film were used as the solvent and coating substrate respectively throughout the experiment. Viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas peel and shear strength was measured by a Lloyd Adhesion Tester. Results show that viscosity and shear strength decreases with increasing petro resin concentration. However, peel strength exhibits a maximum value at 40 phr petro resin, an observation which is attributed to maximum wettability and compatibility of adhesive on the substrate. ENR 25-based adhesive exhibits higher viscosity and peel strength but lower shear strength compared to the ENR 50 adhesive system.  相似文献   

8.
采用微波诱导水解法快速制备了纳米TiO_2光催化剂,通过XRD、TEM、SEM、BET和EDS技术对其进行了表征。该方法可在10 min内制备出平均粒径约7.5 nm的锐钛矿相纳米TiO_2。采用该催化剂(加入量0.5 g/L)对盐酸四环素(TC,100 mg/L)进行紫外光催化降解,40 min时降解率高达92.9%,60 min时TOC去除率为81.7%,明显优于市售P25纳米TiO_2。这主要归功于所制备纳米TiO_2表面残留的有机物提高了光生电子-空穴对的分离能力,以及纳米粒子的小尺寸效应和较大的比表面积。溶液p H为9时TC的降解率更高。该催化剂具有较好的光催化稳定性。活性基团捕获实验表明,纳米TiO_2光催化降解TC过程中空穴起主要作用。  相似文献   

9.
In this work the composting process of municipal solid wastes was studied in order to characterize the transformations of organic matter, particularly humic acid (HA). A composting process, lasting three months, was monitored by chemical methods; the following parameters were measured: water-soluble carbon concentration (WSC) and humic substances content (humic and fulvic acid (FA)). The effects of humification on the molecular structure of humic acid (HA) were also evaluated by Fourier transform infrared (FT-IR) and (13)C NMR spectroscopy. WSC concentration rapidly increased reaching a maximum at day-14 of the composting process and then declined. The humic and fulvic acid content (HA and FA, respectively) slightly increased during the process. The FT-IR and (13)C NMR spectra of HA indicate a high rate of change in structure during composting. The groups containing aromatic and carboxylic C increased, while polysaccharides and other aliphatic structures degraded during composting, resulting in HA structures of higher aromaticity. Therefore, spectrometric measurements could provide information significantly correlated to conventional chemical parameters of compost maturity.  相似文献   

10.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

11.
Strips of Ca-I [polylactic acid (PLA) monolayer plastic films from Cargill Dow Polymers LLC, Minnetonka, MN] cut in the machine and nonmachine directions were irradiated with an electron beam using a CIRCLE III Linear Accelerator (MeV Industries S.A., Jouy-en-Josas, Cedex, France). The effects of 33-kGy irradiation on the physical properties of the Ca-I strips were studied. In addition, the effects of ultraviolet (UV) light (365-nm) illumination on the degradation of three PLA plastic films, Ch-I (PLA monolayer plastic films from Chronopol, Golden, CO), GII (PLA trilayer plastic films from Cargill Dow Polymers LLC), MN), and Ca-I (PLA monolayer plastic films from Cargill Dow Polymers LLC) were analyzed by a modified ASTM D5208-91 method. Results showed that irradiation had decreased the weight-average molecular weight (M w), stress at break, percentage of elongation, and strain energy of Ca-I by 35.5, 26.7, 32.3, and 44.8%, respectively (P < 0.01). The shelf life of the irradiated Ca-I strips at 5°C and <20 ± 5% RH was about 6 months. The degradation rate of Ch-I, GII, and Ca-I with no UV light treatment at 55°C and 10% RH was 2512, 5618, and 3785 M w/week, respectively. Under the UV light illumination (365 nm), the degradation rate of Ch-I, GII, and Ca-I, was 2982, 8722, and 7467 M w/week, respectively. Hence, the degradation rate of GII and Ca-I was increased 55 and 97% by UV light (P < 0.008), respectively. This trend was not observed in Ch-I because its starting M w (78,000 g/mol) was close to the tensile strength lost range (50,000 to 75,000 g/mol) of PLA films. To our knowledge, this is the first study to demonstrate that UV light does further enhance the degradation of PLA films.  相似文献   

12.
The biodegradation behavior of PCL film with high molecular weight (80,000 Da) in presence of bacterium Alcaligenes faecalis and the analysis of degraded polymer film have been carried out. Thin Films of PCL were prepared by means of solution casting method and the bacterial degradation behavior was carried in basal medium, in presence of bacteria with time variation after UV treatment. It was observed that after UV treatment the degradation of polymer film was increased and the degradation rate followed a three steps degradation mechanism. The degraded polymer film was analyzed by means of Differential Scanning Calorimeter (DSC), Thermo Gravimetric Analyzer (TGA) and Fourier Transform Infrared Spectroscope (FTIR). DSC results revealed that at the initial stages of the degradation up to 15–20 days, the bacterium preferentially degrades the amorphous parts of the polymer film over the crystalline zone. Thermo gravimetric analysis highlighted the low temperature stability of degraded films with extent of degradation. FTIR results showed the chain scission mechanism of the polymer chains and also supported the preferential degradation of amorphous phase over crystalline phase in the initial stages of the degradation.  相似文献   

13.
An investigation on the effect of epoxidation and maleated natural rubber (MNR) on fatigue and rubber-filler interaction properties of paper sludge filled natural rubber composites was elucidated. Paper sludge loading was varied from 0 to 40 phr and conventional vulcanisation system was used while compounding was carried out on a laboratory sized two roll mill. Two different types of natural rubber, SMR L and ENR 50 having 0 and 50 mole% of epoxidation were used in order to investigate the effect of epoxidation on the composites. Results indicate that, at a fixed filler loading, ENR 50 vulcanizates exhibit higher fatigue life than SMR L vulcanizates especially at filler loading below 20 phr which might be associated with better rubber-filler interaction. In the case of composites with the addition of maleated natural rubber (MNR), a higher fatigue life was observed due to presence of physical and/or chemical linkages, which increases the interfacial adhesion. Scanning electron microscopy (SEM) micrographs of fatigue fracture surfaces and rubber-filler interaction study supported the observed result on fatigue life.  相似文献   

14.
This study focused on the microbial desulfurization of ground tire rubber (GTR) by Sphingomonas sp. that was selected from coal mine soil and had sulphur oxidizing capacity. GTR was immersed in the medium co-cultured with the Sphingomonas sp. for 20?days. The growth curve of Sphingomonas sp. during co-cultured desulfurization with GTR was measured and the surface chemical groups of GTR before and after desulfurization were analyzed. The crosslink density, mechanical properties, dynamic mechanical properties, and morphology of fracture surface of SBR composites filled with GTR or DGTR were studied to evaluate the microbial desulfurization effect. The results showed that GTR had low toxicity to Sphingomonas sp., so Sphingomonas sp. was able to maintain a high biomass. After desulfurization, not only a rupture of conjugated C=C bonds, but also a reduction of sulfur content had happened to GTR. The sol fraction of GTR increased from its original 4.69?C8.68% after desulfurization. Desulfurated ground tire rubber (DGTR) sheets had better physical properties, and higher swelling values than GTR sheets. The DMA results showed that SBR/DGTR composite had a reduction of molecular chain friction resistance during glass transition region and a decrease of glass transition temperature. SEM photograph further indicated a good coherency interface between DGTR and the rubber matrix.  相似文献   

15.
In the present work the photo-degradation of polychloroprene (PCP) in toluene solution catalyzed by FeCl3·6H2O and polychromatic light was investigated based on FTIR and 13C NMR spectroscopies, on conductivity measurements and DSC technique. The band in the 1700–1790 cm−1 range in the FTIR spectrum characterized the presence of carbonyl products due to the degradation of the PCP on the solution exposed to polychromatic light. The formation of carbonyl on degraded PCP was confirmed by the presence of signal on 13C NMR at δ 203.5. Products of PCP degradation, such as acid chlorides, generated in the toluene solution migrate to the aqueous phase (in contact with toluene phase) and the conductivity of aqueous phase increased as the time is elapsed. The area related to the PCP melting-peak on the DSC (film casted after the PCP-FeCl3·6H2O toluene solution has been exposed to polychromatic light) significantly decreased in comparison to that in the DSC of the raw PCP cast film.  相似文献   

16.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   

17.
Photocatalytically-oxidized cross-linked chitosan-glutaraldehyde (CS-GLA) was obtained via irradiation of a simple assemblage of an immobilized layer-by-layer TiO2/CS-GLA system on a glass plate with a 45-W fluorescent lamp. The oxidation process was observed to occur only in the presence of oxygen and TiO2 within 5 cycles (10 h) of irradiation. Characterizations studies of the oxidized cross-linked polymer involving swelling index, pH-potentiometric titration and ionic conductivity measurements, as well as CHN, FTIR, 13C solid-state NMR,UV–Vis DRS and photoluminescence spectroscopy analyses generally indicated that the oxidation led to the formation of carbonyl groups, partial elimination of some un-reacted amino groups and change of visual color to be more brown without altering much of the whole molecular structure of the CS-GLA. This study also indicated that the photocatalytic performance of TiO2/oxidized CS-GLA system was higher than both TiO2/CS-GLA system and TiO2 single layer for the removal of phenol. Moreover, the adsorption effect was extremely negligible and the photodegradation of phenol was mainly due to the photocatalytic process.  相似文献   

18.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

19.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

20.
The miscibility of cellulose acetate (CA; degree of substitution = 2.5) and poly(ethylene succinate) (PES) has been investigated using a variety of thermal techniques and by solid-state carbon13 NMR spectroscopy. The blends containing greater than ca. 70% CA were found to be miscible. In the case of blends containing less than ca. 70% CA, a combination of thermal and NMR analyses suggests that these blends are not fully miscible on a 2.5- to 5-nm scale. On the scale which can be probed by dynamic mechanical thermal analysis (15 nm), the low-percentage CA blends exhibit “significant local concentration fluctuations≓. Investigation of the biodegradation of the blend components and of the blends revealed that PES degraded relatively rapidly and that CA degraded slowly. The blends degraded at a rate essentially identical to that of CA. Miscibility (75% CA blend) or crystallization of PES (30% CA blend) had no significant effect. These data suggest that a significant mode of degradation ófPES during composting involves chemical hydrolysis of the polymer followed by biological assimilation of monomers. Degradation of the blends is initiated in the amorphous phase. Because CA is a significant component of the amorphous phase, a small amount of CA significantly impacts the biodegradation rates of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号