首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crustose coralline alga Lithothamnium pseudosorum induces high rates of settlement and metamorphosis of larvae of the coral-eating crown-of-thorns starfish (Acanthaster planci). In cases where crustose coralline algae (CCA) induce metamorphosis of marine invertebrate larvae it is normally assumed that the inductive molecules are produced by the alga, but an alternative is that they originate from bacteria on the plant surface. Bioassays using shards of L. pseudosorum treated with several antibiotics, whereby some shards were reinfected with bacteria from the alga, showed that if bacteria populations are depleted then settlement and metamorphosis of larvae of A. planci are inhibited. This demonstrates that bacteria are necessary for induction and suggests that morphogenic substances are produced by bacteria on the surface of the alga and not directly by the alga itself. However, surface bacteria are not inductive if they are isolated from soluble algal compounds, suggesting either that they require a substrate from the alga to produce the inductive agents or, alternatively but less likely, that compounds from both the alga and bacteria are required. There is no evidence that inductive compounds derive from the alga, since algal cell debris and soluble extracts prepared from the alga do not induce metamorphosis of A. planci. This is the first time that induction of metamorphosis in a marine invertebrate by CCA has been shown to be mediated by bacteria associated with the alga.  相似文献   

2.
3.
This study measured the progression from pelagic larvae to juvenile barnacles, and examined whether recruitment of barnacles, Semibalanus balanoides Linnaeus, at two intertidal sites in contrasting hydrodynamic regimes was determined by pre-settlement or post-settlement processes. The two sites were 1.5 km apart in the vicinity of Woods Hole, Mass., USA. Quantitative plankton samples were taken twice weekly from December 1997 to May 1998 at a nearby site as an estimate of nearshore larval abundance. The presence of S. balanoides nauplii was noted, and cyprids were enumerated and measured. Larval settlement at the two sites [Gansett Point, Buzzards Bay (GP) and Little Harbor, Vineyard Sound (LH)] was estimated from examination of replicate settlement plates exposed for 2 or 3 days throughout the settlement season, and from replicate plots on marked rock quadrats at each site. On both plates and rocks settled cyprids and metamorphs were enumerated. Space occupancy on unmanipulated rock quadrats by all stages from cyprids to adult barnacles was also examined. Settlement occurred from 2 January to 20 May, and major settlement peaks coincided with peaks in pelagic cyprid concentration at LH, but not at GP. Space occupied by juvenile barnacles was close to zero up until late February despite substantial settlement prior to that. At LH, juvenile barnacle cover was zero at the end of the observations; all settlement failed. Almost 100% of settled cyprids failed to metamorphose within 2 days from late January to late March. Then the proportion metamorphosing increased sharply coinciding with a sudden increase of 3°C in water temperature. Observed site differences in space occupancy by juvenile barnacles suggest that while cyprid supply is a necessary condition for barnacle settlement, other factors affecting metamorphosis of settled cyprids and early juvenile mortality determine recruitment.  相似文献   

4.
In aquaculture centers of the northern region of Japan, "Nami-ita" (waved polycarbonate plates), on which the green alga Ulvella lens Crouan frat. (Chaetophoraceae: Chaetophorales) was cultured, are used to promote larval settlement and metamorphosis of the sea urchin species Strongylocentrotus intermedius (A. Agassiz) and S. nudus (A. Agassiz). We investigated chemical inducer(s) for larval settlement and metamorphosis of these sea urchins with extracts of U. lens. Bioassay-guided separation of the methanol extract using a combination of column and thin-layer chromatography led to the isolation of several active compounds, the chemical structures of which were determined by spectral and chemical methods. These active compounds were identified as glycoglycerolipids, all comprising several molecular species: sulfoquinovosyl monoacylglycerols (SQMGs), sulfoquinovosyl diacylglycerols (SQDGs), monogalactosyl monoacylglycerols (MGMGs), monogalactosyl diacylglycerols (MGDGs), digalactosyl monoacylglycerols (DGMGs) and digalactosyl diacylglycerols (DGDGs). Among these glycolipids, SQMGs, MGMGs, MGDGs and DGMGs induced larval metamorphosis of the sea urchin S. intermedius. SQMGs and MGDGs induced larval metamorphosis at a concentration of 5 µg ml-1, whereas SQDGs and DGDGs only induced larval settlement. These glycoglycerolipids are new congeners of chemical inducers to settlement and metamorphosis of planktonic larvae of sea urchins. The findings would provide a better understanding of larval settlement and metamorphosis in sea urchins.  相似文献   

5.
To test whether coral planulae recruit randomly to different coral reef habitats or have specific substratum preferences, the settling behavior of planulae from two shallow water coral species from Pago Bay, Guam (13°25.02N, 144°47.30E) were examined in the laboratory in June and July of 1995. Goniastrea retiformis is generally restricted to the shallow reef front (<10 m depth) in areas dominated by crustose coralline algae (CCA), while Stylaraea punctata is abundant on inner reef flats were CCA coverage is low and sand and carbonate rubble covered by biofilms is common. When presented with four substrata (1) carbonate rock scrubbed free of biofilm and dried as a control, (2) the CCA Hydrolithon reinboldii, (3) the CCA Peyssonelia sp., and (4) naturally conditioned carbonate rubble covered by a biofilm, G. retiformis larvae showed a significant preference for H. reinboldii, and S. punctata larvae for the carbonate biofilm treatment. The preference shown by S. punctata larvae for biofilmed surfaces did not diminish with increasing larval age up to 11 days. These results suggest that the larvae of both species are capable of habitat selection, and that the preferred substrata among those tested bears a relationship to the habitats in which adult colonies were found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
During the summer of 1995, we investigated the response of mud crab megalopae (Panopeus herbstii Milne-Edwards) to cues associated with adult habitat. Natural rock/shell substratum and the rock-associated seaweed, Fucus vesiculosus L., both induced metamorphosis of competent megalopae; natural sand substratum did not induce metamorphosis. Structural mimics of preferred substrata induced metamorphosis only when covered with natural biofilm. Clean mimics did not induce metamorphosis. Water-soluble exudates from preferred substrata showed weak induction of metamorphosis. Exudates from adult P. herbstii elicited a similar weak response. Exudates from another species of crab and from two fish predators did not induce metamorphosis. We conclude that water-soluble cues associated with major components of preferred adult habitat induce the metamorphic molt of P. herbstii megalopae. The three-dimensional structure of the substratum is not important in induction of metamorphosis, but the biofilm associated with preferred substratum plays a critical role. It is not clear whether the biofilm produces the water-soluble cue or simply provides a tactile stimulus that works in conjunction with the soluble cue.  相似文献   

7.
It has been proposed that the common West Coast limpet, Lottia digitalis, is actually the northern counterpart of a cryptic species duo including, Lottia austrodigitalis. Allele frequency differences between southern and northern populations at two polymorphic enzyme loci provided the basis for this claim. Due to lack of further evidence, L. austrodigitalis is still largely unrecognized in the literature. Seven additional enzyme loci were examined from populations in proposed zones of allopatry and sympatry to determine the existence of L. austrodigitalis as a sibling species to L. digitalis. Significant allele frequency differences were found at five enzyme loci between populations in Laguna Beach, southern California, and Bodega Bay, northern California; strongly supporting the existence of separate species. Both species exhibit two microhabitat morphotypes, a gooseneck barnacle morph in the mid-intertidal zone and a rock morph in the high-intertidal zone. In sympatry, L. austrodigitalis was more abundant higher in the intertidal on rocks, whereas L. digitalis was more abundant lower in the intertidal on barnacles. This finding supports earlier claims of microhabitat partitioning in this sibling species pair. In addition to this finding, the transition zone between the species was found to have shifted substantially northward in only two decades, from Monterey Peninsula, CA to near Pigeon Point, CA, where L. digitalis previously dominated.  相似文献   

8.
The settlement behavior, antennulary biomechanics and morphology were investigated in the intertidal cypris larvae Balanus amphitrite. The very maneuverable antennule of the cyprid consists of four jointed segments, and it is the prime appendage for substratum exploration and final settlement. We recorded several previously undescribed settling behaviors, such as the "tight direction change", for this intertidal species and discovered that the antennulary morphology is modified to facilitate such behaviors. Segment 2 has a modified lateral cuticle, which gives the segment an additional higher degree of maneuverability compared to non-intertidal cirripede species of Rhizocephala. Additional supporting muscle groups were also found in the antennule of our species, which were not found in the investigated rhizocephalan larvae. The results could very well be associated with the higher needs of substratum recognition in intertidal species, due to more heterogeneous habitats such as intertidal rock flats.  相似文献   

9.
D. S. Stoner 《Marine Biology》1994,121(2):319-326
The rate at which larvae successfully recruit into communities of marine benthic invertebrates is partially dependent upon how well larvae avoid benthic predators and settle on appropriate substrata. Therefore, to be able to predict recruitment success, information is needed on how larvae search for settlement sites, whether larvae preferentially settle on certain substrata, and the extent to which there are adequate cues for larvae to find these substrata. This article describes how larvae of the colonial ascidian Diplosoma similis find settlement sites on a coral reef. Direct field observations of larval settlement were made on a fringing reef in Kaneohe Bay, Oahu, Hawaii, between September 1985 and April 1986. A comparison of the substrata that larvae contacted prior to settlement relative to the percentage cover of these substrata on the study reef suggests that larvae are using a non-contact mode of substratum identification to locate suitable settlement sites. This mode of substratum identification allowed 74% of larvae to evade predation by benthic organisms who would otherwise have eaten larvae if they had been contacted. Of those larvae that evaded predation, 88% subsequently settled on the same two substrata upon which most adults are found (dead coral or the green alga Dictyosphaeria cavernosa). This pattern of settlement was probably a result of active selection, since the two substrata cover only 14.4% of the reef's surface and currents had little effect on the direction in which larvae swam. An important contributing factor to the high success rate of larval settlement on suitable substrata was the lack of any temporal decay in substratum preference. It is concluded that for Diplosoma similis larval supply is a sufficient predictor of larval settlement rate. However, for marine invertebrates whose larvae are passively dispersed and exhibit a greater temporal decay in substratum preference, larval settlement should generally have a greater dependency on spatial variation in the abundance of benthic predators and suitable substrata.  相似文献   

10.
Many species of marine invertebrate larvae settle and metamorphose in response to chemicals produced by organisms associated with the adult habitat, and histamine is a cue for larvae of the sea urchin Holopneustes purpurascens. This study investigated the effect of histamine on larval metamorphosis of six sea urchin species. Histamine induced metamorphosis in larvae of three lecithotrophic species (H. purpurascens, Holopneustes inflatus and Heliocidaris erythrogramma) and in one planktotrophic species (Centrostephanus rodgersii). Direct comparisons of metamorphic rates of lecithotrophic and planktotrophic larvae in assays cannot be made due to different proportions of larvae being competent. Histamine (10 μM) induced metamorphosis in 95% of larvae of H. purpurascens and H. inflatus after 1 h, while the coralline alga Amphiroa anceps induced metamorphosis in 40–50% of these larvae. Histamine (10 μM) and A. anceps induced 40 and 80% metamorphosis, respectively, in the larvae of H. erythrogramma after 24 h. Histamine (10 μM) and the coralline alga Corallina sp. induced 30 and 70% metamorphosis, respectively, in the larvae of C. rodgersii after 24 h. No metamorphosis of any larval species occurred in seawater controls. Larvae of two planktotrophic species (Tripneustes gratilla and Heliocidaris tuberculata) did not metamorphose in response to histamine. Seagrasses, the host plants of H. inflatus, induced rapid metamorphosis in larvae of the two Holopneustes species, and several algae induced metamorphosis in C. rodgersii larvae. Histamine leaching from algae and seagrasses may act as a habitat marker and metamorphic cue for larvae of several ecologically important sea urchin species.  相似文献   

11.
Sessile marine invertebrate larvae can recognize suitable settlement substrata by using various environmental cues, including organic/microbial biofilms. In laboratory choice assays, the effect of biofilms of varying ages on the settlement behaviour of two fouling organisms was assessed. The species included the arborescent cheilostome bryozoan Bugula flabellata (Thompson) and the solitary ascidian Ciona intestinalis (L.), both of which are characteristic of temperate sublittoral hard substratum assemblages in northwest Europe. Experiments were carried out using polystyrene petri dish substrata preconditioned with multispecies biofilms from natural laboratory-aquarium seawater for 1, 3, 6 or 12 d. Unfilmed (new, initially sterile) dishes were used as control substrata. Whereas the coronate larvae of B. flabellata generally were inhibited by biofilming, irrespective of film age, the settlement of tadpole larvae of C. intestinalis was facilitated on biofilmed substrata, and numbers of settled larvae generally increased with biofilm age: the highest mean numbers were counted on 12 d-old biofilms. In C. intestinalis, settlement and metamorphosis are processes which can be temporally separate and are possibly induced by different environmental cues. This study therefore distinguished between C. intestinalis larvae which were attached to the biofilm surface by the anterior, and those larvae entrapped by the biofilm but not settled in the conventional meaning of the term. As reported in previous studies, we did observe that such entrapped larvae could subsequently attach and develop successfully into sessile juveniles. Both the numbers of “attached” and “trapped” tadpoles increased with biofilm age. Assuming that “settlement” is essentially a process involving the active behavioural response of larvae to environmental cues, it seems that the facilitated attachment of C. intestinalis onto biofilmed substrata is due to the combined effect of active habitat selection and passive deposition/“entrapment” of larvae onto the “sticky” substratum. Received: 21 August 1996 / Accepted: 21 November 1996  相似文献   

12.
Laboratory-cultured larvae of the black chiton Katharina tunicata (Wood), collected from central California in May and June of 1979 and 1980, settled preferentially on the encrusting coralline alga Lithothamnium sp. Metamorphosis, which involves the loss of the prototrochal ciliary band, occurred within a period of 2.5 h after larvae began crawling upon the alga. In response to gamma-aminobutyric acid (GABA) at a concentration of 10-6 M, the lecithotrophic trochophore larvae ceased swimming and settled rapidly. Developmental metamorphosis did not follow settlement in the absence of encrusting coralline alga. However, when both GABA and Lithothamnium sp. were present, larval metamorphosis occurred within 2 h of settlement. Significantly different rates of settlement exist for sibling larvae of different ages; 12 d-old larvae responded more rapily and in greater numbers to treatment with GABA than 10 d-old larvae. Differences in settling rates are attributed to the onset of metamorphic competence.  相似文献   

13.
Settlement is a major determinant of intertidal populations. However, the energy costs of lost larvae are very high. Accordingly, arrival and attachment on suitable substrata are essential requirements for species’ survival. On the intertidal, the presence of cues left by adult or juvenile conspecifics could be vital for the successful establishment of larvae arriving on the shore. Two mussel species, the indigenous Perna perna and the invasive Mytilus galloprovincialis, co-occur on the lower eulittoral zone on the south coast of South Africa. P. perna dominates the low and M. galloprovincialis the high mussel zones, with co-existence in the mid mussel zone. This study tested the hypothesis of settlement selectivity for conspecifics in these two mussel species, to understand whether the final adult distribution of mussels on the shores is determined by active behavioural and chemical mechanisms. Preferential selection by larvae for conspecifics was tested in the field during the peak settlement period in 2004 in natural mussel beds across zones and through manipulative experiments in the mid-zone where the species co-exist. On natural beds, settlement was determined by counts of settlers attached over 48 h onto artificial collectors. Collectors were placed on beds of P. perna and M. galloprovincialis present at both high- and low-adult densities, as well as in mixed beds. On such natural beds, settlers of both species consistently favored low-zone P. perna beds. Settlement patterns over 24 h onto experimentally created mussel patches consisting of P. perna, M. galloprovincialis or the two species combined beds, set in the mixed zone, did not conform with the results of the natural beds study: settlers of both species settled with no discrimination among different patches. The results indicate that mussels, which are sedentary, lack attraction to conspecifics at settlement. This highlights the importance of tidal height in setting settlement rates, and of post-settlement events in shaping populations of these broadcast spawners.  相似文献   

14.
Four species of adult Carapini (Carapidae) occur on Polynesian coral reefs: Encheliophis gracilis, Carapus boraborensis, C. homei and C. mourlani. Samples collected in Rangiroa and Moorea allowed us to obtain different tenuis (larvae) during their settlement phases or directly inside their hosts. These were separated into four lots on the basis of a combination of pigmentation, meristic, morphological, dental and otolith (sagittae) features. Comparison of these characters with those of the adults allows, for the first time, taxonomic identification of these tenuis-stage larvae.  相似文献   

15.
The non-geniculate crustose coralline alga (CCA) Mastophora pacifica can induce the metamorphosis of competent Haliotis asinina (Vetigastropoda) larvae. The ability to respond to this natural cue varies considerably with larval age, with a higher proportion of older larvae (e.g. 90 h) able to metamorphose in response to M. pacifica than younger larvae (e.g. 66 h). Here we document the variation in time to acquisition of competence within a larval age class. For example, after 18 h of exposure to M. pacifica, approximately 15 and 36% of 84 and 90-h-old H. asinina larvae had initiated metamorphosis, respectively. This age-dependent response to M. pacifica is also observed when different aged larvae are exposed to CCA for varying periods. A higher proportion of older larvae require shorter periods of exposure to CCA than younger larvae in order to initiate metamorphosis. In this experiment, as in the previous, a small proportion of young larvae were able to respond to brief periods of CCA exposure, suggesting that they had developed the same state of competency as the majority of their older counterparts. Comparisons of the proportions of larvae undergoing metamorphosis between families reveals that parentage also has a significant (P<0.05) affect on whether an individual will initiate metamorphosis at a given age. These familial differences are more pronounced when younger, largely pre-competent larvae (i.e. 66 h old) are exposed to M. pacifica, with proportions of larvae undergoing metamorphosis differing by as much as 10 fold between families. As these data suggest that variation in the rate of development of the competent state has a genetic basis, and as a first step towards identifying the molecular basis to this variation, we have identified numerous genes that are differentially expressed later in larval development using a differential display approach. Spatial expression analysis of these genes suggests that they may be directly involved in the acquisition of competence, or may play a functional role in the postlarva following metamorphosis.Communicated by M.S. Johnson, Crawley  相似文献   

16.
Larval dispersal and recruitment are important in determining adult coral distribution; however, few studies have been made of coral larval dispersal. This study examined the larval behavior, survivorship competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis, in relation to different potential larval dispersal patterns. We also examined the lipid content of H. coerulea as a means of flotation and a source of energy. Planulae of H. coerulea were on average 3.7 mm in length, lacked zooxanthellae, and were mostly benthic, probably because of restricted movement and low lipid content (54% by dry weight). Planulae of P. damicornis were on average 1.0 mm in length, had zooxanthellae and swam actively. The competency period of H. coerulea was shorter (30 days) than that of P. damicornis (100 days). Forty percent of H. coerulea planulae crawled onto the substrata within 1 h of release, and 47% settled within 6 h. By contrast, fewer than 10% of P. damicornis planulae crawled onto the substrata within the first hour and 25% settled within 6 h of release. The planulae of H. coerulea may have a narrower dispersal range than those of P. damicornis, settling and recruiting near parent colonies. Thus, brooding corals exhibit variations in larval dispersal patterns, which are characterized by their position in the water column and competency periods.  相似文献   

17.
Lipophilic inducers of larval settlement and metamorphosis of Pseudocentrotus depressus and Anthocidaris crassispina, two commercially important sea urchin species in Japan, were isolated from the foliose coralline red alga Corallina pilulifera (collected in 1990 near Saga, Japan) and identified. Larval assays of the fractions obtained by silica gel column chromatography of the total lipids showed that non-polar groups of lipids were effective at inducing larval settlement and metamorphosis. The effective fractions were further subjected to gel filtration (Sephadex LH-20) and also to silica gel column chromatography, and the effective components isolated as single spots by thin-layer chromatography. The components at a concentration of ca. 0.4 mg paper-1 (sample was adsorbed on a paper with 20 cm2) induced high rates of larval settlement of both P. depressus and A. crassispina. Chemical analyses of the components revealed a mixture of free fatty acids (FFAs), dominated by eicosapentaenoic acid (20:5, 41 to 50%), palmitic acid (16:0, 11 to 17%), arachidonic acid (20:4, 9 to 15%), and palmitoleic acid (16:1, 4 to 5%). In assays with the four standard FFAs, only 20:4 and 20:5 induced larval settlement and metamorphosis of the two species, while 16:0 and 16:1 were ineffective. The larvae underwent significant rates of settlement and metamorphosis in response to the two former FFAs at levels as low as 0.18 mg paper-1. Amongst the free fatty acid components of the alga, 20:5 was isolated as the chemical inducer of larval settlement and metamorphosis of the sea urchins in the laboratory.  相似文献   

18.
Sublethal effects on larval crabs upon exposure to toxic dinoflagellates were examined in the laboratory in early 1999. Specifically, oxygen consumption rates and geotaxis responses were determined for stage 1 larvae of the crabs Cancer oregonensis (Dana) and C. magister Dana that were exposed to non-toxic (Alexandrium tamarense, strain 115) or toxic (A. fundyense, strain 1719) dinoflagellates or to freshly hatched nauplii of the brine shrimp Artemia sp. In C. oregonensis, larvae exposed to the toxic dinoflagellate showed reduced rates of oxygen consumption compared to those exposed to non-toxic dinoflagellates or brine shrimp nauplii. Larvae exposed to a filtrate of the non-toxic dinoflagellate showed no change in oxygen consumption, but a reduced rate when exposed to filtrate from the toxic alga at densities >5᎒2 cells ml-1. In C. magister, larvae exposed to the non-toxic A. tamarense or the toxic A. fundyense had reduced oxygen consumption rates. Larvae exposed to filtrates of non-toxic and toxic dinoflagellates had no change in oxygen consumption. In geotaxis tests, C. oregonensis larvae exposed for 1 day to the toxic A. fundyense reduced their level of locomotion compared to those exposed to non-toxic A. tamarense or to brine shrimp nauplii. C. magister larvae showed no change in activity after a 1-day exposure to the toxic A. fundyense. After a 4-day exposure to A. fundyense, C. magister larvae had much reduced locomotion. Reduced locomotory activity in larvae exposed to toxic algae is consistent with the changes in oxygen consumption rates. Responding to exposure to toxic algae by reducing locomotion may affect vertical migration in these negatively buoyant crab larvae, resulting in sinking below a toxic alga bloom, at least temporarily.  相似文献   

19.
The serpulid polychaete Hydroides elegans Haswell, 1883 is an early colonist of new substrata in Pearl Harbor, Oahu, Hawaii. When metamorphically competent, larvae of H. elegans will settle rapidly upon an acceptably biofilmed surface, but not on a clean surface. In this study we found the ability of larvae to respond selectively to inductive surfaces to be retained for at least 3 wk. Of a series of bacterial strains isolated from Hawaiian marine biofilms, 13 induced larval settlement, 11 gave moderate or mixed results, and 10 others did not stimulate the settlement of H. elegans. The amount of settlement induced by monospecific strains was rarely as great as with natural, multispecies films. Most of the isolated bacteria were motile Gram-negative rods, but Gram-positive strains were also present, and diverse metabolic types were represented in the study. Biofilms killed by treatment with heat, ultraviolet radiation or chemical fixatives were no longer inductive. Soluble, dialyzable, heat-stable bacterial products induced settlement and metamorphosis more slowly. The range of bacteria producing an inductive signal suggests either that there are multiple cues, or that the cue is common to many bacteria. Chemical signals characteristic of early microbial biofilms may indicate freshly available substrata with optimal potential for the growth and survival of H. elegans. Received: 30 January 1998 / Accepted: 12 September 1998  相似文献   

20.
In marine invertebrates multiple modes of development, or poecilogony, may occur in a single species. However, after close examination, many of such putative cases turned out to be sibling species. A case in point may be the cosmopolitan orbiniid polychaete Scoloplos armiger, which inhabits marine shallow sediments. In addition to the well-known direct, holobenthic development from egg cocoons, pelagic larvae have also been described. Our culture experiments revealed a spatially segregated source of the two developmental modes. All females of an intertidal population produced egg cocoons and no pelagic larvae. All but 2 out of 15 females of an adjacent subtidal population produced pelagic larvae and no egg cocoons. Based on these results we performed a molecular genetic analysis (RAPD-PCR) on three intertidal and four subtidal populations in the North Sea. Selected samples from all sites were analysed also by the AFLP method. We found significantly higher genetic diversity within subtidal than within intertidal populations. This is consistent with a wider dispersal by pelagic larvae and a smaller effective population size when development is holobenthic. Total genetic divergence is not related to distance but to the intertidal/subtidal division. We suggest that S. armiger actually represents two sibling species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号