共查询到20条相似文献,搜索用时 0 毫秒
1.
A study was conducted to evaluate the water quality of Jaipur City. Groundwater samples from hand pumps and tube wells of eleven sampling stations were analyzed during monsoon session with the help of standard methods of APHA. The analytical results shows higher concentration of total dissolved solids, electrical conductivity, total hardness and nitrate, which indicate signs of deterioration but values of pH, calcium, magnesium, sulphate and fluoride are within permissible limit as per WHO standards. From the Hill-Piper trilinear diagram, it is observed that the majority of ground water from sampling stations are calcium-magnesium-chloride-sulphate type water. The values of sodium absorption ratio and electrical conductivity of the ground water were plotted in the US salinity laboratory diagram for irrigation water. Most of the samples fall in C3S1 quality with high salinity hazard and low sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation (in meq/l) is in order magnesium > sodium > calcium > potassium while for the anion (in meq/l) it is chloride > bicarbonate > sulphate > nitrate > carbonate > fluoride. 相似文献
2.
Spatial variability of depth and salinity of groundwater under irrigated ustifluvents in the Middle Black Sea Region of Turkey 总被引:2,自引:0,他引:2
Yusuf Demir Sabit Erşahin Mustafa Güler Bilal Cemek Hikmet Günal Hakan Arslan 《Environmental monitoring and assessment》2009,158(1-4):279-294
Information on the potential risk for soil salinity buildup can be very helpful for soil salinity management in irrigated areas. We evaluated the spatial and temporal variability of groundwater salinity (GWS) and groundwater depth (GWD), which are two of the most important indicators of soil salinity, by indicator kriging technique in a large irrigated area in northern Turkey. GWS and GWD were measured on a monthly basis from irrigation season (August 2003) to rainy season (April 2004) at 60 observation wells in the 8,187-ha irrigated area. Five indicator thresholds were used for GWS and GWD. The semivariogram for each of the thresholds for both variables was analyzed then used together with experimental data to interpolate and map the corresponding conditional cumulative distribution functions (CCDF). Risk for soil salinity buildup was greater in the irrigation season compared to that in the rainy season. The greatest risk for soil salinity buildup occurred in the eastern part of the study area, suffering from poor drainage problem due to malfunctioning drainage infrastructure, as indicated by the CCDF of GWS and GWD obtained in both seasons. It was concluded that a combination of mechanical and cultural measures should be taken in high-risk locations to avoid further salinity problems. 相似文献
3.
PraiseGod Chidozie Emenike Chidozie Charles Nnaji Imokhai Theophilus Tenebe 《Environmental monitoring and assessment》2018,190(7):440
Groundwater pollution resulting from anthropogenic activities and poor effluent management is on the rise in Nigeria. Hence, groundwater used for domestic purposes is questionable and therefore calls for scientific scrutiny. Investigation of hydrochemical interactions and quality of groundwater resource is essential in order to monitor and identify sources of water pollutants. As a result, groundwater samples were collected from 21 locations in Abeokuta South, Nigeria and analyzed for physicochemical parameters using standard methods. Results obtained were subjected to hydrochemical and geospatial analyses. Water quality parameters investigated exhibited wide variations from location to location. Fe2+, Mg2+, SO42?, Cl?, total hardness (TH), Mn, Na+, NO3?, SiO2, and alkalinity exhibited the highest levels of variation with coefficients of variation of 131.3, 92.8, 83.9, 76.7, 65.9, 64.3, 57.6, 57.2, 57.0, and 52.5, respectively. The average pH value was 6.76 with 71% of the water samples being slightly acidic. Na2+, Mg2+, Fe2+, and EC contents exhibited the most violation of drinking water standards with percent violations of 100, 52.4, 47.6, and 47.6%, respectively. Parameters, such as Mn, Ca2+, NO3?, and CO32?, were within the WHO guideline values for drinking water in all the samples. The highest level of significant correlation was found to exist between Na+ and Cl? (r?=?0.84, α?=?0.01). Six principal components, which explained 83.5% of the variation in water quality, were extracted with the first (34.1%) and second components (15.7%) representing the influence of mineral dissolution and anthropogenic practices, respectively, on the hydrochemistry of the area. Four hydrochemical clusters were identified with distinctly partitioned water quality. Further analysis revealed that 38, 29, 24, and 9% of the samples were the Na-K-HCO3, Na-K-Cl-SO4, Ca-Mg-HCO3, and Ca-Mg-Cl-SO4 types, respectively. Anthropogenic activities are increasing threat to groundwater quality in the study location and therefore call for urgent attention. There is also a need for routine monitoring of groundwater in Abeokuta. 相似文献
4.
5.
P. Ravikumar K. Venkatesharaju R. K. Somashekar 《Environmental monitoring and assessment》2010,163(1-4):643-653
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 28 groundwater samples were collected around Vrishabhavathi valley region of Bangalore South Taluk to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca2?+?, Mg2?+?, Na?+?, K?+?) and anions $(\text{HCO}_{3}^{-}$ , Cl???, F???, $\text{SO}_{4}^{2-}$ , $\text{NO}_{3}^{-}$ , $\text{PO}_{4}^{3-}$ , $\text{CO}_{3}^{2-})$ besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed to delineate spatial variation in physico-chemical characteristics of groundwater samples. Piper trilinear diagram was constructed to identify groundwater groups (hydrochemical facies) using major anionic and cationic concentration and it was found that majority of the samples belongs to $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{Cl}^{-}-\text{SO}_{4}^{2-}$ and $\text{Ca}^{2+}-\text{Mg}^{2+}-\text{HCO}_{3}^{-}$ hydrochemical facies. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 92.86% of the samples were falling under good to permissible category and C3–S1 groups, respectively, indicating high salinity/low sodium. 相似文献
6.
Pujari PR Padmakar C SuriNaidu L Vaijnath VU Kachawe B Gurunadha Rao VV Labhasetwar PK 《Environmental monitoring and assessment》2012,184(5):2921-2937
The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as
one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and
pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for
treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater
quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable
the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two
sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located
in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness
from 2–3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set
up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological
cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters
have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination
of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable
clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant
groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates
that there is good environmental space available for the expansion of industrial units in the Pithampur industrial hub. 相似文献
7.
Anastasios Xepapadeas 《Environmental Modeling and Assessment》1996,1(1-2):25-35
A quantity-quality problem in which pollution generates production externalities is analyzed empirically. Water is pumped by farmers from a common access aquifer, and deep percolation resulting from the irrigation causes accumulation of pollutants in the aquifer. Pollution negatively affects the production of the agricultural output through the deterioration of the groundwater quality. By comparing the cooperative with the noncooperative solution, an optimal policy scheme in the form of water taxes is determined. The scheme induces farmers acting noncooperatively to follow policies that correspond to the regulator's optimum. The model is applied to the case of groundwater management in the Iraklio prefecture of Crete. Agricultural production functions are estimated using an externality variable as explanatory variable. An optimal control model that corresponds to the cooperative solution is solved using multiple shooting methods. Paths for water stock, salinity stock, and water use at the regulator's optimum are derived. The optimal water tax is calculated in the final stage. 相似文献
8.
The chemical quality of groundwater in six district of the eastern region beneath the different types of land use areas of Ghana was examined to evaluate the effects of human activities on groundwater. Analyses indicate that groundwater in the studied area is fresh and generally suitable for most uses. The groundwater is generally characterised by a chemical facies of Ca-HCO3-, Na-Cl and mixed Na-Ca-HCO3 types and is weakly mineralised. Anthropogenic disturbances have had and continue to have an impact on the aquatic ecosystem of Ghana. High concentration of Cl- and TDS were found in wells in high residential areas while the highest levels of Na, Ca, SO4(2-) and NO3- were found in agricultural and high density residential areas. About 50% of boreholes sampled have elevated level of NO3(-)-N emanating from agricultural runoff. 相似文献
9.
Groundwater is almost globally important for human consumption as well as for the support of habitat and for maintaining the quality of base flow to rivers, while its quality assessment is essential to ensure sustainable safe use of the resources for drinking, agricultural, and industrial purposes. In the current study, 50 groundwater samples were collected from parts of Palar river basin to assess water quality and investigate hydrochemical nature by analyzing the major cations (Ca, Mg, Na, K) and anions (HCO(3), Cl, F,SO(4), NO(3), PO(4),CO(3), HCO(3), and F) besides some physical and chemical parameters (pH, electrical conductivity, alkalinity, and total hardness). Also, geographic information system-based groundwater quality mapping in the form of visually communicating contour maps was developed using ArcGIS-9.2 to delineate spatial variation in physicochemical characteristics of groundwater samples. Wilcox classification and US Salinity Laboratory hazard diagram suggests that 52% of the groundwater fall in the field of C2-S1, indicating water of medium salinity and low sodium, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. Remaining 48% is falling under C1-SI, indicating water of low salinity and low sodium. 相似文献
10.
A total of 144 isolates of Pseudomonas spp. (48 each from the Yamuna River water, wastewater irrigated soil and groundwater irrigated soil) were tested for their resistance against certain heavy metals and antibiotics. Minimum inhibitory concentrations (MICs) of Hg2?+?, Cd2?+?, Cu2?+?, Zn2?+?, Ni2?+?, Pb2?+?, Cr3?+? and Cr6?+? for each isolate were also determined. A maximum MIC of 200 ??g/ml for mercury and 3,200 ??g/ml for other metals were observed. The incidences of metal resistance and MICs of metals for Pseudomonas isolates from the Yamuna water and wastewater irrigated soil were significantly different to those of groundwater irrigated soil. A high level of resistance against tetracycline and polymyxin B (81.2%) was observed in river water isolates. However, 87.5% of Pseudomonas isolates from soil irrigated with wastewater showed resistance to sulphadiazine, whereas 79.1% were resistant to both ampicillin and erythromycin. Isolates from soil irrigated with groundwater exhibited less resistance towards heavy metals and antibiotics as compared to those of river water and wastewater irrigated soil. Majority of the Pseudomonas isolates from water and soil exhibited resistance to multiple metals and antibiotics. Resistance was transferable to recipient Escherichia coli AB2200 strains by conjugation. Plasmids were cured with the curing agent ethidium bromide and acridine orange at sub-MIC concentration. 相似文献
11.
Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland 总被引:1,自引:0,他引:1
Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants. 相似文献
12.
A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage,Saq aquifer,northwest of Saudi Arabia 总被引:1,自引:0,他引:1
Yousef Nazzal Izrar Ahmed Nassir S. N. Al-Arifi Habes Ghrefat Faisal K. Zaidi Mahmud M. El-Waheidi Awni Batayneh Taisser Zumlot 《Environmental monitoring and assessment》2014,186(8):4655-4667
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, CO3 ?, HCO3 ?, Cl?, SO4 2?, and NO3 ?. Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902?μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 ? concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 ? concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper’s classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca2+ and Mg2+ over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone. 相似文献
13.
A computer-based program for the assessment of water-induced contamination in irrigated lands 总被引:1,自引:0,他引:1
Narracci M Cavallo RA Acquaviva MI Prato E Biandolino F 《Environmental monitoring and assessment》2009,158(1-4):307-314
The non-point characteristic of agrarian contamination hinders its quantification and assignation to a specific territory. The objectives of this work were to unify methodological criteria for agro-environmental evaluation and to propose indices to quantify irrigation-induced contamination. The computer program Irrigation Land Environmental Evaluation Tool (in Spanish, EMR; http://www.jcausape.es/investigacion/EMR.htm ) was developed to evaluate the quality of irrigation and the agro-environmental impacts, based on the water, salt, and nitrate balances in the hydrological irrigation basins. The behavior of the proposed indices was analyzed using data registered in various irrigation districts in the Ebro valley (Spain). The Salt and Nitrate Contamination Indices (SCI and NCI, respectively) were based on the unitary mass of exported pollutants, corrected by the "natural and socioeconomic" conditions of the irrigation districts evaluated. SCI and NCI were related to water and nitrogen use, key factors in minimizing contamination. SCI and NCI admit a greater mass of exported pollutants in disadvantaged irrigation districts, which does not allow the exclusion of adequate management in any evaluated irrigation lands. EMR is a user-friendly tool at the service of the agro-environmental surveillance of irrigation lands. 相似文献
14.
In this study, land use change and its effects on level and volume of groundwater were investigated. Using satellite images and field measurements, change in land uses was determined from 1998 to 2007. By analyzing the observation wells data and preparing the zoning maps in GIS, groundwater level fluctuations were assessed. Considering the area corresponding to these fluctuations, changes in aquifers volume were calculated. The rain gauge and synoptic stations data were used to calculate meteorological parameters and evapotranspiration. The water requirement of the main crops was determined by CROPWAT software. Results showed an increase in average rainfall and crops water requirement. The classification of satellite images showed that 11,800 ha was increased in lands under irrigated crops cultivation, while 27,655 ha of rangeland was declined in the region. Groundwater levels dropped an average of 7 m, equal to 63.4 MCM reductions in volume of water in the aquifer. 相似文献
15.
A 12-month study was carried to assess the seasonal and tidal effects on the physical parameters of river and groundwater, which constitute the major potable water sources in Calabar (Nigeria). The study also included an evaluation of the chemical composition of the different water bodies and their relationship. The results show that there was a significant seasonal effect on dissolved oxygen (DO) and nitrate in groundwater on one hand, and on temperature, redox potential (Eh), and DO in river water on the other. Also, a significant tidal influence exists on DO in both river-and groundwater. Comparison between groundwater and river water show statistically significant difference in EC, TDS, Eh, DO, Na, Cl and NO(3). The significant differences in EC, TDS, Na and Cl are due to tidal flushing. The difference in Eh is due to geology of the area while, NO(3) is as a result of anthropogenic pollution. The concentrations of ions in the river and groundwater for the different seasons and tidal cycles show an inverse relationship, while the river water is generally more concentrated than the groundwater. Using a binary mixing model, estimates show that the degree of mixing of river water and groundwater is low, with values of between 1.93% and 2.76% respectively, in the western and eastern parts of the study area. The study concludes that tidal flushing, anthropogenic effects and oxygen supply during recharge contribute to the shaping of water chemistry in the area. 相似文献
16.
Quality assessment of water is essential to ensure sustainable safe use of it for drinking, agricultural, and industrial purposes. For the same purpose the study was conducted for the samples of water of Sambhar lake city and its adjoining areas. The standard methods of APHA were used to analysis 15 samples collected from hand pumps and tube wells of the specified area. The analytical results show higher concentration of total dissolved solids, electrical conductivity sodium, nitrate, sulfate, and fluoride, which indicate signs of deterioration but values of pH, calcium, magnesium, total hardness, and carbonate are within permissible limits as per WHO standards. From the Hill-piper trilinear diagram, it is observed that the majority of groundwater from sampling stations are sodium?Cpotassium?Cchloride?Csulfate type water. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US salinity laboratory diagram for irrigation water. Only the one sample fall in C3S1 quality with high salinity hazard and low sodium hazard. Other samples fall in high salinity hazard and high sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation is in order sodium > magnesium > calcium > potassium while for the anion it is chloride > bicarbonate > nitrate > sulfate. 相似文献
17.
Mapping forest composition from the Canadian National Forest Inventory and land cover classification maps 总被引:1,自引:0,他引:1
Canada's National Forest Inventory (CanFI) provides coarse-grained, aggregated information on a large number of forest attributes. Though reasonably well suited for summary reporting on national forest resources, the coarse spatial nature of this data limits its usefulness in modeling applications that require information on forest composition at finer spatial resolutions. An alternative source of information is the land cover classification produced by the Canadian Forest Service as part of its Earth Observation for Sustainable Development of Forests (EOSD) initiative. This product, which is derived from Landsat satellite imagery, provides relatively high resolution coverage, but only very general information on forest composition (such as conifer, mixedwood, and deciduous). Here we link the CanFI and EOSD products using a spatial randomization technique to distribute the forest composition information in CanFI to the forest cover classes in EOSD. The resultant geospatial coverages provide randomized predictions of forest composition, which incorporate the fine-scale spatial detail of the EOSD product and agree in general terms with the species composition summaries from the original CanFI estimates. We describe the approach and provide illustrative results for selected major commercial tree species in Canada. 相似文献
18.
19.
Chromium speciation in groundwater of a tannery polluted area of Chennai City, India 总被引:2,自引:0,他引:2
Chromium speciation in groundwater of a tannery polluted area was investigated for the distribution of chromium species and the influence of redox couples such as Fe(III)/Fe(II) and Mn(IV)/Mn(II). Speciation analysis was carried out by ammonium pyrolidinedithiocarbamate (APDC)–methylisobutylketone (MIBK) procedure. The groundwater samples were analyzed for Cr(III), Cr(VI), and Cr(III)-organic complexes. The APDC could not extract the Cr(III)-organic complexes, but HNO3 digestion of the groundwater samples released the Cr(III)-organic complexes. The groundwater of the area is relatively oxidizing with redox potential (E h) and dissolved oxygen (DO) ranged between 65 and 299 mV and 0.25 and 4.65 mg L???1, respectively. The Fe(II) reduction of Cr(VI) was observed in some wells, but several wells that had Fe(II)/Cr(VI) concentrations more than the stoichiometric ratio (3:1) of the reduction reaction also had appreciable concentration of Cr(VI). This could partly be due to the oxidation of Fe(II) to Fe(III) by DO. It appears that the occurrence of Mn more than the Fe(II) concentration was also responsible for the presence of Cr(VI). Other reasons could be the Fe(II) complexation by organic ligands and the loss of reducing capacity of Fe(II) due to aquifer materials, but could not be established in this study. 相似文献
20.
The hydrochemical characterization of groundwater is important to bring out its nature and usefulness. The main objective
of this paper was to discuss the major ion chemistry of groundwater in the Mambakkam mini watershed. Besides its semi-arid
nature, rapid socioeconomic development encourages a greater demand for water, which leads to uncontrolled groundwater development.
The groundwater of the study area is characterized by the dominance of alkaline earth (Ca2+, Mg2+) and strong acids (Cl−, SO4−) over alkalies (Na+, K+) and weak acids (HCO3−, CO3−) during both post-monsoon and pre-monsoon seasons of the year 2010, based on the hydrochemical facies. These have been probably
derived from natural chemical weathering of rock minerals, ion exchange and anthropogenic activities of the fertilizer source.
The classification based on the total hardness reveals that a majority of groundwater samples fall in the hard to very hard
category during the pre-monsoon season. Based on the values of EC, SAR and RSC and the diagrams of USSL and Wilcox, most of
the groundwater samples range from excellent to permissible for irrigation purposes, with a low alkalinity and high salinity
hazard, except for a few samples in the study area. 相似文献