共查询到18条相似文献,搜索用时 78 毫秒
1.
本研究通过试验考察了混凝污泥回流强化混凝工艺单独使用和搭配粉末活性炭使用时,对制药废水中COD、SS和TOC的强化去除效能,以及回流比对Zeta电位的影响。结果表明,相比常规工艺,采用单独混凝污泥回流强化混凝工艺,可将COD、SS和TOC去除率分别提高7.5%、7%和10%;搭配粉末活性炭后,COD和TOC去除率分别提高36.8%和21.5%,而对SS去除率影响不显著;Zeta电位变化显示,该工艺对污染物去除的主要机理是电中和。试验说明,回流工艺能强化去除污染物的原因主要是回流污泥和聚合氯化铝水解产物中不溶性金属氢氧化物的吸附电中和作用,以及粉末活性炭最大限度的吸附作用。另外,该工艺处理成本较常规工艺更低。 相似文献
2.
饮用水源突发挥发酚污染应急处理中试研究 总被引:3,自引:0,他引:3
通过为期2个月规模为4m3·h-1的中试试验,考察了常规给水工艺(混凝、沉淀和过滤)对突发挥发酚污染原水的处理情况.重点考察了活性炭吸附、臭氧预氧化和高锰酸钾预氧化等3种应急工艺的除酚效能.结果表明,常规混凝沉淀对挥发酚的去除率低于10%,砂滤在12h内可起到拦截挥发酚的作用,3种应急工艺均可提高挥发酚的去除效果,起到应急的作用.其中活性炭吸附对挥发酚的去除率可达44%;在0.5mg·L-1的投量下高锰酸钾预氧化可达到50%的除酚效率;臭氧预氧化可使沉淀出水挥发酚达标(0.002mg·L-1),挥发酚去除率约99%. 相似文献
3.
用几种活性炭与压缩活性炭联用技术进行饮用水深度处理试验。试验结果表明:颗粒活性炭、粉末活性炭分别与压缩活性炭联用来进行饮用水的深度处理均能取得明显的效果。比较粉末活性碳,颗粒活性碳与压缩活性碳联用对EUY254、CODMn、NTU的处理效果,显示颗粒活性碳优于粉末活性碳,不同型号的颗粒活性碳的处理效果也有一定差别。 相似文献
4.
《环境科学与技术》2017,(11)
以太湖水为原水,模拟突发苯胺类水污染时,探索超滤工艺对苯胺类污染物质的去除效果。研究了粉末活性炭、高锰酸钾对苯胺去除效果的投加量和反应时间,以及两者联用时的药剂投加顺序以及在超滤工艺下的投加量优化。研究表明:粉末活性炭和高锰酸钾对苯胺均有一定的去除效果,应急处理的最佳反应时间是30 min;当发生苯胺类水污染时,先投加粉末活性碳,再投加高锰酸钾,超滤去除苯胺类污染物质的效果最优,去除率可以达到85%;实验表明:粉末活性炭—高锰酸钾—超滤组合工艺技术作为苯胺的应急处理措施是可行的,粉末活性炭与高锰酸钾投加量的比约为55 mg:2.4 mg;同时,与传统常规水处理工艺相比,超滤具有去除颗粒粒径范围广,抗粉末活性碳负荷强,可以避免砂率层被穿透的优点。 相似文献
5.
针对长江水源地可能发生的六氯苯(HCB)突发污染事故,开展了应急处理工艺研究.考察了混凝剂聚合硫酸铁(PFS)投加量、KMnO4预氧化和木质粉末活性炭(PAC)吸附预处理对HCB 去除效果的影响.根据静态试验,设计了三因素三水平正交试验,进一步考察了KMnO4氧化与PAC 吸附联用预处理-混凝沉淀工艺去除HCB 的效果.结果表明,常规处理无法有效去除HCB;单独KMnO4 预氧化无法明显改善混凝沉淀对HCB的去除效果;PAC联用吸附预处理可明显提高去除效率.正交试验结果表明,在PAC,PFS,KMnO4投加量分别为40,5.0,0.5mg/L的最佳条件下,HCB 去除率为98.97%,但浊度在2NTU 以上.选取PAC 吸附预处理-混凝沉淀工艺进行中试试验,结果表明,在PFS 和PAC 投加量分别为15mg/L 和40mg/L 时,HCB 的去除率在98%以上,HCB 剩余浓度和浊度分别在1µg/L 和1NTU 以下. 相似文献
6.
突发性水体敌百虫污染的应急处理研究 总被引:1,自引:0,他引:1
文章模拟突发有机磷农药敌百虫污染,采用粉末活性炭吸附法和混凝沉淀法进行应急处理研究。试验结果标明:粉末活性炭吸附法适合处理低浓度水样,对0.5 mg/L的敌百虫溶液,活性炭投加量为47.608 mg/L(20℃,240 min)、78.421 mg/L(30℃,240 min)和138.207 mg/L(40℃,240 min),处理后的水样中敌百虫浓度均低于生活饮用水卫生标准中规定的0.05 mg/L。混凝沉淀法处理5 mg/L的敌百虫水样,投加混凝剂聚合氯化铝(PAC)160 mg/L、助凝剂聚丙烯酰胺(PAM)4 mg/L时,水中敌百虫剩余浓度低于生活饮用水卫生标准中规定的0.05 mg/L。 相似文献
7.
8.
活性污泥投加粉末活性炭的基础特性研究 总被引:3,自引:0,他引:3
在活性污泥(AS)中投加粉末活性炭(PAC)的试验结果表明,PAC不吸附氨氮,对COD的吸附容量也仅为0.0148—O.2305g COD/g PAC.而[AS+PAC]系统的反应速率常数K分别是[PAC]和[AS]系统的2.33倍和1.40倍,COD绝对去除量大于[PAC]和[AS]二者系统之和,并能明显地提高生物处理系统的有机物去除率。同时,1mg PAC还能吸附0.5—0.75mg DO;当活性污泥的PAC量占1/3,SVI可从389ml/g降至200ml/g以下;含1.5g/L PAC的污泥在投加碱式氯化铝后,污泥比阻仅为原比阻的25%,相应过滤产率提高1倍。 相似文献
9.
10.
11.
12.
采用以粉末活性炭(PAC)作为填料的复合式膜生物反应器处理小区生活污水.该反应器在不人为排泥,不对膜进行任何处理(不空曝、不清洗)的情况下,连续运行100d.结果表明,系统运行稳定,出水水质优良(COD<25mg/L,NH4+-N<0.6mg/L,无色无味,无SS,没有检测出大肠杆菌).PAC不仅改善了膜生物反应器中的污泥混合液的沉淀性能与可过滤性,同时也改善了膜表面滤饼层的水力特性,从而达到了减小膜过滤阻力,延缓膜污染的目的,而且还降低了运行成本. 相似文献
13.
针对河南某产业集聚区已建污水处理厂出水不能稳定达标问题,分别采用聚合硫酸铁混凝、高铁酸钾氧化协同聚合硫酸铁混凝、芬顿试剂氧化等方法对该厂的二沉池出水进行深度处理,研究了这三种方法对污水中CODcr和TP的去除效果.结果表明,聚合硫酸铁混凝不能将污水中的CODcr和TP处理达标;高铁酸钾氧化协同聚合硫酸铁混凝可以将污水中的CODcr处理达标,但是不能将污水中的TP处理达标;芬顿试剂氧化可以将污水中的CODcr和TP均处理达标,符合城镇污水处理厂污染物排放标准一级A排放要求. 相似文献
14.
15.
16.
采用混凝沉淀工艺深度处理某煤矿生活污水二级生化出水,考察了高锰酸钾氧化、粉状活性炭吸附对混凝沉淀的强化作用。结果表明:单独投加高锰酸钾或粉状活性炭均能起到强化去除污染物的作用,最佳加药量分别为4 mg/L和15 mg/L时,两者对CODcr的去除率分别提高了11.4%和8.0%,对SS的去除率分别提高了10.6%和13.5%。高锰酸钾氧化与粉状活性炭吸附两者联用具有协同作用,处理效果优于单独投加高锰酸钾或粉状活性炭,其对CODcr的去除率提高了19.0%、对SS的去除率提高了22.4%。 相似文献
17.
聚合氯化铝与三氯化铁混凝剂在常规水处理中的运用 总被引:3,自引:0,他引:3
通过聚合氯化铅与三氯化铁在常规水处理的生产性实验,从经济成本、水质指标和实际使用存在的问题对其进行分析比较,并比较了两种混凝剂在常规水处理中的优缺点。 相似文献
18.
为了实现小区生活污水再利用,进行以聚丙烯腈活性炭纤维(PAN-ACF)为载体的生物膜法处理小区生活污水的实验研究,以生活污水中COD、NH3-N、SS、浊度、pH等为检测指标来研究反应器的处理效果,实验结果表明该反应器对生活污水中COD、NH3-N、SS、浊度有非常高的去除效率,而且抗冲击负荷能力较强,以上指标出水均符合"城市污水再生利用城市杂用水水质标准"(GB/T18920-2002)中城市绿化规定的水质标准。此外,实验表明聚丙烯腈活性炭纤维(PAN-ACF)作为生物膜载体具有很好的生物亲和性。 相似文献