首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is significant to arrange suitable design and placement of best management practices (BMPs) for reaching the aim that can not only satisfy environmental quality standards, but also decrease the total cost of BMPs. This study applied WinVAST model to predict watershed responses. The objective of this work was to discuss both the economic costs and benefits of BMPs and the control efficiency of discharge and pollutant exports, and to create some suitable standards for the optimal BMPs placement strategies. It is significant to find an optimal number and location of BMPs. In the case study herein, the number of BMPs including a detention pond and a grassy swale would be better to be given by four. The number of BMPs should also be determined by the environmental standards. Moreover, the result shows that the optimal location of BMPs placement is in the downstream area near the outlet and on the mainstream of the catchment. When the BMPs are set in these regions, it cannot only reduce the peak flow and peak pollutant exports, but also have slow time to peak watershed responses.  相似文献   

2.
It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.  相似文献   

3.
Low impact development best management practices (LID-BMPs) are considered to be cost-effective measures for mitigating the water quantity and quality impact of urban runoff. Currently, there are many types of LID-BMPs, and each type has its own intrinsic technical and/or economical characteristics and limitations for implementation. The selection of the most appropriate BMP type(s) for a specific installation site is therefore a very important planning step. In the present study, a multi-criteria selection index system (MCIS) for LID-BMP planning was developed. The selection indexes include 12 first-level indices and 26 second-level indices which reflect the specific installation site characteristics pertaining to site suitability, runoff control performance, and economics of implementation. A mechanism for ranking the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LID-BMPs. The quantified indices were normalized and then integrated to obtain the score for each of the first-level index. The final evaluation scores of each LID-BMP were then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores. In order to facilitate the application of the MCIS BMP ranking system, the computational process has been coded into a software program, BMPSELEC. A case study demonstrating the MCIS methodology, using an LID-BMP implementation planning at a college campus in Foshan, Guangdong Province, is presented.  相似文献   

4.
Despite the importance of forested wetland in the global carbon cycle, no widely applicable ecosystem model exists for this ecosystem. This study reports the linkage between Wetland-DNDC and MIKE SHE for carbon dynamics and GHGs mitigation strategies analyses in forested wetland. Wetland-DNDC was modified by parameterizing forest management practices and refining anaerobic biogeochemical processes. Mortality due to senescence was estimated as a function of tree age or as a function of the relative biomass. We used a harvesting damage mortality coefficient as a linear function of time with three parameters: Initial mortality, Duration of the damage and Intensity of the initial harvesting. The model was validated against experimental data obtained from the GNF site near Florida. As a preliminary application, we simulated the effect of water table position and forest management practices on GHGs emissions and carbon dynamics to test the capabilities of the models for simulating seasonal and long-term carbon budget in forested wetland.  相似文献   

5.
This study investigated the impacts of two best management practices (BMPs) recommended by US Environmental Protection Agency on Pb weathering and leachability in shooting range soils. The two BMPs included replacing soil berm with sand berm and periodically removing bullets or shot from a berm. A column experiment corresponding to the first BMP was conducted by mixing the bullets with sand/soil, or placing bullets on the surface of sand/soil. After a 16–18-week incubation under high or low rainfall simulations, total Pb concentrations in sand were lower than that in soil. Total leachable Pb in sand (8.48 and 5.52 μg?kg?1) was also lower than that in soil (60.0 and 30.4 μg?kg?1) when bullets were mixed with sand/soil; however, they were comparable when bullets were placed on the sand/soil surface. These results indicate that lower Pb concentration in the sand than in soil may be attributed to reduced weathering of bullets. Mechanical removal of Pb bullets in the field transferred Pb from large to finer particles, increasing total Pb in the soil (<2 mm) from 2,170 to 5,000 mg?kg?1. In contrast, mechanical removal of Pb shot effectively reduced the shot in the soil by 86–92 %. Thus, we concluded that, while replacing soil berm with sand berm can slow down Pb weathering, it may increase Pb leachability in the long term. Removal of Pb bullets and Pb shot can be effective, but caution needs to be exercised to minimize the adverse impacts, especially in pistol/rifle ranges because of increased total Pb content in the soil.  相似文献   

6.
Benchmarking of environmental performance to demonstrate theachievement of best practice environmental management is acomponent of a new form of licensing of industrialdischarges in Western Australia. The paper describes theapproaches to benchmarking for the critical environmentalissues for an alumina refinery and wastewater treatmentplant. It also describes the lessons learnt from thebenchmarking process on appropriate methods, the benefitsand difficulties in the benchmarking process, and changesthat would assist benchmarking for best practiceenvironmental management.  相似文献   

7.
Half of the original Everglades system has been lost to drainage and development. What remains is included within the boundaries of the Everglades Protection Area (EPA), comprised of three Water Conservation Areas (WCAs) and Everglades National Park (Park). Inflows to the EPA contain elevated nutrient concentrations. Best management practices (BMPs) were implemented and six large wetlands called stormwater treatment areas (STAs) were constructed to improve water quality. We analyzed water quality in the WCAs and Park and performed an economic analysis of the STAs to remove nutrients from EPA inflows. In general, nutrient concentrations in all WCAs were higher during the pre-STA period than after the STAs became operational. In WCA2 and the Park, total phosphorus (TP) trends showed more negative slopes prior, as compared to after, the STAs became operational. These results suggest that BMPs lead to large initial decreases in nutrient export resulting in improved downstream water quality. A preliminary economic analysis shows that operation and management of the STAs are complicated and cost intensive. Comparing the cost of phosphorus (P) removal from water entering the EPA using BMPs and STAs may not currently be viable. BMPs prevent P from being applied to, or leaving from agricultural fields while STAs remove P from stormwater. We expect nutrient concentrations in water flowing into and out of the STAs to decline as both BMPs and STAs become more effective. We suggest an economic analysis of BMPs, STAs, and other potential approaches to determine the most cost-effective methods to reduce nutrient concentrations and related stressors affecting the Everglades.  相似文献   

8.
Identifying areas that are susceptible to soil erosion is crucial for water resource planning and management efforts. Furthermore, modeling has proven helpful in recognizing and monitoring high-risk areas at the watershed scale. The Water Erosion Prediction Project (WEPP) geospatial interface (GeoWEPP) software integrates GIS with the WEPP to analyze the spatial variation in soil loss, and it has been used as a modeling tool to determine the areas that are most prone to soil erosion and to evaluate best management practices for the Kasilian watershed in Iran. As much as 62.4 % of the agronomic land in the Kasilian watershed is affected by a high magnitude of erosion (>5 t/ha). On the basis of this study, by using soybeans, high fertilization levels, and the drill-no-tillage system, reductions of erosion by almost 32.68–34.02 % are perceivable in three critical subwatersheds that are located in the cultivated lands. Also, it is projected that reductions in the production of sediment in the range of about 36.7–47.1 % are achievable by structural management within two critical, upland subwatersheds. So, by utilizing the best management strategies, sediment yield can be lowered and the conservation of soil and water is feasible at the watershed scale. These results objectively indicate that GeoWEPP can be efficaciously used for evaluating effective management practices for developing watershed conservation.  相似文献   

9.
Monitoring the concentration of NO(3)-N from agricultural fields to the subsurface and shallow ground water resources have received considerable interest worldwide, since agriculture has been identified as a major source of nitrate-nitrogen (NO(3)-N) pollution of groundwater systems in intensively farmed watersheds. A study was conducted to quantify the impact of two tillage practices viz. chisel plow (CP) and no till (NT) with liquid swine manure application on nitrate leaching to the shallow ground water system under corn-soybean production system. This study is part of the long-term field experiments conducted at Iowa State University using completely randomized block design. The NO(3)-N concentrations in the shallow ground water were monitored at three depths viz., a network of subsurface drains at a depth of 1.2 m and piezometers at depths of 1.8 m and 2.4 m. Results of this study showed that the average NO(3)-N concentration during the study period was 16.1 mg l(-1), 14.4 mg l(-1) and 11.8 mg l(-1) at 1.2 m, 1.8 m and 2.4 m depths, respectively implying significant amount of NO(3)-N leaching past the subsurface drain depth of 1.2 m into the shallow groundwater but the NO(3)-N concentration decreases with the depth. The NO(3)-N concentrations in shallow groundwater were significantly higher under the chisel plow system in comparison with the no till method of tillage. Fall application of liquid swine manure caused more leaching in comparison with the spring application. Higher NO(3)-N concentration was observed under corn in comparison with the soybean plots. An in-depth analysis of the data showed a definite relationship between the NO(3)-N concentration in subsurface drain water at a depth of 1.2 m and shallow groundwater at depths of 1.8 m and 2.4 m depths.  相似文献   

10.
11.
12.
An increase in the average size of individual livestock production operations coupled with local and regional concentrations of these operations tend to increase negative environmental impacts in many watersheds. Environmental compliance strategies developed by the Texas Institute for Applied Environmental Research (TIAER) can be applied to reduce the negative impacts caused by livestock production and other types of agricultural activities. Further, the Institute's planned intervention/micro-watershed approach may provide the foundation for comprehensive solutions to environmental problems within a broad ecosystem management context.  相似文献   

13.
How and where to improve water quality within an agricultural watershed requires data at a spatial scale that corresponds with individual management decision units on an agricultural operation. This is particularly true in the context of water quality regulations, such as Total Maximum Daily Loads (TMDLs), that identify agriculture as one source of non-point source pollution through larger tributary watershed scale and above and below water quality investigations. We have conducted a systems approach study of 10 coastal dairies and ranches to document fecal coliform concentration and loading to surface waters at the management decision unit scale. Water quality samples were collected on a storm event basis from loading units that included: manure management systems; gutters; storm drains; pastures; and corrals and lots. In addition, in-stream samples were collected above and below the dairy facilities and from a control watershed, managed for light grazing and without a dairy facility or human residence and corresponding septic system. Samples were analyzed for fecal coliform concentration by membrane filtration. Instantaneous discharge was measured for each collected sample. Storm runoff was also calculated using the curve number method (SCS, 1985). Results for a representative dairy as well as the entire 10 dairy data set are presented. Fecal coliform concentrations demonstrate high variability both within and between loading units. Fecal coliform concentrations for pastures range from 206 to 2,288,888 cfu/100 ml and for lots from 1,933 to 166,105,000 cfu/100 ml. Mean concentrations for pastures and lots are 121,298 (SE=62,222) and 3,155,584 (SE=1,902,713) cfu/100 ml, respectively. Fecal coliform load from units of concentrated animals and manure are significantly more than units such as pastures while storm flow amounts were significantly less. Compared with results from earlier tributary scale studies in the watershed, this systems approach has generatedwater quality data that is beneficial for management decisions because of its scale and representation of current management activities. These results are facilitating on-farm changes through the cooperative efforts of dairy managers, regulatory agency staff, and sources of technical and financial assistance.  相似文献   

14.
Saudi Arabia is an arid country. It has limited water supplies. About 80?C90% of water supplies come from groundwater, which is depleting day by day. It needs appropriate management. This paper has investigated groundwater modeling of Saq Aquifer in Buraydah Al Qassim to estimate the impact of its excessive use on depletion of Saq Aquifer. MODFLOW model has been used in this study. Data regarding the aquifer parameters was measured by pumping tests. Groundwater levels and discharge of wells in the area for the year 2008 and previous record of year 1999 have been collected from Municipal Authority of Buraydah. Location of wells was determined by Garmin. The model has been run for different sets of pumping rates to recommend an optimal use of groundwater resources and get prolonged life of aquifer. Simulations have been made for a long future period of 27?years (2008?C2035). Model results concluded that pumping from the Saq Aquifer in Buraydah area will result into significant cones of depression if the existing excessive pumping rates prevail. A drawdown up to 28?m was encountered for model run for 27?years for existing rates of pumping. Aquifer withdrawals and drawdowns will be optimal with the conservation alternative. The management scheme has been recommended to be adopted for the future protection of groundwater resources in Kingdom of Saudi Arabia.  相似文献   

15.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

16.
Model-based predictions of the impact of land management practices on nutrient loading require measured nutrient flux data for model calibration and evaluation. Consequently, uncertainties in the monitoring data resulting from sample collection and load estimation methods influence the calibration, and thus, the parameter settings that affect the modeling results. To investigate this influence, we compared three different time-based sampling strategies and four different load estimation methods for model calibration and compared the results. For our study, we used the river basin model Soil and Water Assessment Tool on the intensively managed loess-dominated Parthe watershed (315 km2) in Central Germany. The results show that nitrate–N load estimations differ considerably depending on sampling strategy, load estimation method, and period of interest. Within our study period, the annual nitrate–N load estimation values for the daily composite data set have the lowest ranges (between 9.8% and 15.7% maximum deviations related to the mean value of all applied methods). By contrast, annual estimation results for the submonthly and the monthly data set vary in greater ranges (between 24.9% and 67.7%). To show differences between the sampling strategies, we calculated the percentage deviation of mean load estimations of submonthly and monthly data sets as related to the mean estimation value of the composite data set. For nitrate–N, the maximum deviation is 64.5% for the submonthly data set in the year 2000. We used average monthly nitrate–N loads of the daily composite data set to calibrate the model to achieve satisfactory simulation results [Nash–Sutcliffe efficiency (NSE) 0.52]. Using the same parameter settings with submonthly and monthly data set, the NSE dropped to 0.42 and 0.31, respectively. Considering the different results from the monitoring strategy and the load estimation method, we recommend both the implementation of optimized monitoring programs and the use of multiple load estimation methods to improve water quality characterization and provide appropriate model calibration and evaluation data.  相似文献   

17.
18.
This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008–2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV?<?20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (<LOD). Only the 38 % of the pesticide applied has been detected in at least one cultivar. Metalaxil, myclobutanil, and penconazole were the pesticides most frequently found, while carignano and vermentino were the cultivars with the higher number of residues.  相似文献   

19.
At present, there are several growing problems for sustainable urban growth, and the typical policy strategies to tackle them are inadequate. In recent years, several governments have initiated numerous smart city and smart infrastructure programs aimed at enhancing the quality life of the people and helping town managers improve the public infrastructure activity and management. The usage of the Internet of Things (IoT) for infrastructure system enables the gathering, storing, incorporation, and analysis of large quantities and varieties of information relating to the status and output of infrastructure systems together with public activity through Cloud-based asset management systems, mobile apps, and Big Data analytics. In this paper, a master data management (MDM) approach has been proposed to unlock the importance of comprehensive network data for efficient, safe, and robust community development. In the market field, MDM is implemented for the organization of big data organizational and research applications. The proposed method includes an effective MDM solution for safe, efficient, and functional community design, commercial and open source MDM platforms, city development principles, smart city concept models, adaptive shared network backgrounds, semantic cloud technology, and specialists responsible for designing development, scalable platform technology for evaluating the input.  相似文献   

20.
Around the world many peatlands are managed unsustainably. Drainage of the peat causes soil subsidence and a range of negative societal impacts. Integrated strategies are required to ensure more sustainable long-term settings, based on impact assessment models that simulate the interrelated dynamics of water management and soil subsidence, and determine the spatial and temporal range of societal impacts. This paper presents an integrated modelling framework that meets these requirements. We used the framework to assess the impacts of a range of water management strategies in Dutch peatlands. Average soil subsidence rates were shown to range from 0.6 to 4.5 mm·y 1, resulting in marked differences in societal impacts that affect stakeholders unequally. Moreover, the impacts on real estate damage and water system maintenance revealed inverse trends that result in increasingly unbalanced cost-benefit ratios. The generated insights led the regional water authority to change their current water management strategy, preventing unsustainable future developments. We find the results relevant for improving stakeholders' awareness of long-term impacts of management strategies, and making negotiation processes on goals, means, and possible future pathways more transparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号