首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study, we analyze and assess quantitatively the spatial pattern of vegetation and its ecological degradation information in the Honghe National Nature Reserve (HNNR), a Ramsar-designated site in Northeast China. Statistics from historical survey data are used to measure the degradation of marshes over time and changes in the hydrological regime. Long-term statistical data are also employed to analyze both natural and human impacts on these changes. Both the wetland degradation model and its mechanisms are discussed in this paper. The research finds that the loss of water and other types of degradation in the vegetation habitat caused by the rapid deterioration of the hydrological regime has threatened the status of HNNR as a “storage area of natural genes.” Scientifically constructed strategies are urgently required to ensure sustainable economic benefits that do not adversely affect this nature reserve.  相似文献   

2.
Agricultural activities, especially reclamation, are considered major threats to the wetland ecosystems in Sanjiang Plain, the largest concentrated area of the freshwater wetlands in China. In the past decades, the area of the cultivated land and its grain production have been increased at the cost of wetlands shrinkage. The large-scale land reclamation severely affected the ecosystems in this region. However, such effects at the regional scale are seldom evaluated quantitatively. We used three datasets of LANDSAT MSS and/or TM imagery to estimate the area changes and the transition of land use types from 1980 to 2000. We also valued changes in ecosystem services delivered by each land category using value coefficients published by Costanza et al. [Nature 387, 1997, 253–260]. Sensitivity analysis suggested that these estimates were relatively robust. Finally, the contribution of various ecosystem functions was ranked to the overall value of the ecosystem services in this study. According to our estimates, the total annual ecosystem service values in Sanjiang Plain have declined by about 40% between 1980 and 2000 ($156284–182572.18 million in total over 20 years). This substantial decline is largely attributed to the 53.4% loss of wetlands. For individual ecosystem functions, waste treatment, water supply and disturbance regulation account for more than 60% to the total ecological values. During those two decades, the contribution of disturbance regulation, cultural and recreation decreased, while the contribution of water regulation, nutrient cycling, food production, raw materials and climate regulation increased during the same period. We also put forward a few proposals concerning the future land use policy formulation and sustainable ecosystems. They are adjusting the ‘food first’ agricultural policy, establishing more nature reserves for wetlands, creating systems for the rational use of water, harnessing the degraded cultivated land and encouraging eco-tourism.  相似文献   

3.
4.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

5.
Groundwater vulnerability assessments provide a measure of the sensitivity of groundwater quality to an imposed contaminant load and are globally recognized as an essential element of all aquifer management and protection plans. In this paper, the vulnerability of groundwaters underlying the Yinchuan Plain of Northwest China is determined using OREADIC, a GIS-based assessment tool that incorporates the key characteristics of the universally popular DRASTIC approach to vulnerability assessment but has been modified to consider important additional hydrogeological factors that are specific to the region. The results show that areas of high vulnerability are distributed mainly around Qingtongxia City, Wuzhong City, Lingwu City, and Yongning County and are associated with high rates of aquifer recharge, shallow depths to the water table, and highly permeable aquifer materials. The presence of elevated NO3 in the high vulnerability areas endorses the OREADIC approach. The vulnerability maps developed in this study have become valuable tools for environmental planning in the region and will be used for predictive management of the groundwater resource.  相似文献   

6.
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in agricultural soil samples from Shanghai to determine levels and to identify possible dioxin sources. The dioxin level was measured by an enzyme immunoassay method, US EPA 4025 (modified), which provides results as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents. The Method 4025m results obtained from 60 soil samples displayed a normal distribution, ranging from 2.8 to 23.4 pg/g 2378-TCDD-equvalents, with an average of 11.0 pg/g. The result also revealed a similar PCDD/Fs concentration among crop usage patterns, but differences by geographic region, low in the southwest of Shanghai and considerably higher in the northwest region. In contrast, the dioxin concentrations on Chongming Island were fairly homogeneous, with a range 10–15 pg/g. This immunoassay method is an effective high throughput screening tool which helps to minimize the need for more expensive analyses.  相似文献   

7.
Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates [Formula: see text], nitrites [Formula: see text], ammonium [Formula: see text], sulfate [Formula: see text] and phosphate [Formula: see text]. These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. [Formula: see text], [Formula: see text] and [Formula: see text] levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. [Formula: see text] and [Formula: see text] concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.  相似文献   

8.
In this paper, the concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured in biota (reed, grass, mussel, fish, and red-crowned crane) and sediments collected from seven locations in the Zha Long Wetland. PAHs were recovered from the sediments and biota by ultrasonic extraction and then analyzed by means of gas chromatography-mass spectrometry. The total PAH concentrations were 244–713 ng/g dw in sediments, 82.8–415 ng/g dw in plants and 207–4,780 ng/g dw in animals. The total sediment PAH concentrations were categorized as lower to moderate contamination compared with other regions of China and the world. In the plant samples, the accumulation abilities of reed roots and stems for PAHs were higher than those of grass roots. In addition, the concentration of individual PAHs in mussel muscles was the highest in all of the animal samples, followed by fish, feeding crane fetuses, and wild crane fetuses. Compositional analysis suggests that the PAHs in the sediments from the Zha Long Wetland were derived from incomplete biomass combustion. Risk assessment shows that the levels of PAHs in sediments are mostly lower than the effects range mean value (effects range mean), whereas only naphthalene in all sample sites was higher than the effects range low value. It is worthwhile to note that benzo(b)fluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene were detected in crane fetal, which have potential carcinogenicity for organisms from the Zha Long Wetland.  相似文献   

9.
Crude oil exploration and production has been the largest anthropogenic factor contributing to the degradation of Momoge Wetland, China. To study the effects of crude oil on wetland soils, we examined the total petroleum hydrocarbon (TPH), total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), as well as pH and electricity conductivity (EC) from oil sites and uncontaminated areas in the Momoge Wetland. All contaminated areas had significantly higher (p < 0.05) contents of TPH and TOC, but significantly lower (p < 0.05) TN contents than those of the uncontaminated areas. Contaminated sites also exhibited significantly higher (p < 0.05) pH values, C/N and C/P ratios. For TP contents and EC, no significant changes were detected. The level of soil contamination and impact of oil residuals on soil quality greatly depended on the length of time the oil well was in production. Oil residuals had caused some major changes in the soils’ chemical properties in the Momoge Wetland.  相似文献   

10.
Endemic fluorosis was investigated and studied in the west region of the Songnen plain, Northeast China in 2001–2002. The results showed that the fluorine distribution in aquatic environment was that the fluorine concentrations in the lake water and unconfined ground water were higher than that in the river water and confined ground water. The lake water (Alkali lake) is connected with unconfined ground water. In unconfined ground water, from the east and southeast areas to the west and the northwest areas of the plain, fluorine concentration fluctuated with high and low alternatively. The fluorine in the water comes from the weathering of rocks and minerals in the mountains and hills around the Songnen Plain. The main influence factors of the fluorine distribution in aquatic environment are discussed. Unconfined ground water containing high fluorine is used as drinking water. In this region, the fluorine concentration in drinking water is evidently correlated to the morbidity of dental and skeletal fluorosis. High fluorine concentration in drinking water has endangered human health.  相似文献   

11.
The organic carbon, permeability test, grain size, chemical composition, and mineral composition were analyzed for 147 samples collected from the Luan River catchment, Hebei province, China, to quantitatively characterize the effects of land use, climate change, sedimentary environment, mineral composition, and chemical composition on the spatial and temporal variation of soil organic carbon (SOC). The results indicate that there was higher SOC content and stronger variation in the south plain than in the northern low mountain. The effects of land use, climate change, and sedimentary environment on SOC distribution were greater than the effects of mineral composition and chemical composition. The cropping systems in the Luan River catchment resulted in significant difference in SOC concentration between the south plain and north mountain. The precipitation mainly transmitted its effects through the sedimentary environment to SOC, which caused the stronger temporal variation in SOC from June to October in the south plain. The north mountain did not have significant temporal variation because of the lower hydraulic conductivity of the sedimentary sequence. The spatial variation of SOC was correlated with land use, and their temporal variation was attributed to climate change and sedimentary environment. Apart from land use, the decision maker can also affect the organic carbon mineral and sequence through the sedimentary environment.  相似文献   

12.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

13.
Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of global carbon stock. Hence, we attempted to assess the influence of different tillage and nutrient management practices on various stabilized and active soil organic carbon pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural management practices on the soil organic carbon pools and extractable nutrients under three important cropping systems, viz. soybean–wheat, maize–wheat, and rice–wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient management treatments in soybean–wheat, maize–wheat, and rice–wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic carbon (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO4-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass carbon. Under different cropping sequences, labile fractions of soil organic carbon exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil.  相似文献   

14.
The hilly area of Loess Plateau has some of the highest soil erosion rates in the world, and serious soil erosion causes great losses of plant nutrients. As the most common land use in Loess Plateau, slope farmland contributed most of the erosion soils. This study was designed to examine the effects of land use and slope angle of farmland on phosphorus (P) loss in the hilly area of loess plateau. Farmland (FR), barrenland (BR), and four forest treantment (seabuckthorn+ poplar (SP), immature seabuckthorn (IS), mature seabuckthorn (MS), immature Chinese pine (ICP)) were the types of land use; 10, 15, 20, 25, 30 degrees were the slope angles of FR that were compared. The results showed a larger proportion of P loss occurred in erosion soil fraction of FR, ICP, ICP, and the five slope treatments of FR; in SP, IS, and MS, P loss was primarily through runoff. FR produced more P loss than SP, IS, ICP, BR, and MS. 20∼30 degrees may be the slope ranges for P loss of FR; FR in this ranges would loss more P with soil erosion. SP, IS, and MS were reasonable land uses for their less runoff, soil loss, and P loss. Farmlands over 15 degrees should be abandoned or reforested for it would produce more runoff, soil loss, and P loss.  相似文献   

15.
The level, distribution, compositional pattern, and possible sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soil of Shanghai were investigated. The concentrations ranged from 140.7 to 2,370.8 μg kg(?-1) for 21 PAHs and from 92.2 to 2,062.7 μg kg(?-1) for 16 priority PAHs, respectively. The higher level of PAHs was mainly distributed in the south and west of Shanghai region, and the lower concentration was found in Chongming Island. Generally, the composition pattern of PAHs was characterized with high molecular weight PAHs, the seven possible carcinogenic PAHs accounted for 4.8-50.8% of the total PAHs, and fluoranthene, pyrene, and benzo[b]fluoranthene were the most dominant components in soil samples. The correlation analysis suggested that low molecular weight PAHs and high molecular weight PAHs were originated from different sources and further corroborated that total organic carbon was a key soil property affecting the fate of persistent organic pollutants in the environment. The isomer ratios and principal component analysis indicated that PAHs in the investigated areas were derived primarily from combustion of biomass, coal, and petroleum. Compared to the soil quality standards of the Netherlands, all the target PAHs (except Ant) in most samples exceeded their target values. The Nemerow composite index based on the same soil quality standard showed that 69.4% of the soil samples were heavily polluted. The total BaP(eq) of ten Dutch target PAHs in 72% soil samples were higher than the reference total carcinogenic potency. Therefore, the agricultural soil in Shanghai is suffering from serious PAHs contamination.  相似文献   

16.
This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health.  相似文献   

17.
A part of the Gangetic Alluvial Plain covering 2,228 km2, in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km2, affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of—(1) cummulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.  相似文献   

18.
The utilisation of Social Impact Assessment (SIA) in Iran is analysed in terms of its policy context and its application in practice. Five case studies where SIA was employed in conjunction with Environmental Impact Assessments (EIA) for agricultural development projects are evaluated. In addition, the performance of the policy context is assessed. This research revealed that there are legal and institutional constraints to the effective functioning of SIA in Iran, and that there are deficiencies in the operating guidelines. There were serious problems associated with the way SIA was undertaken in all five case studies. Recommendations to improve the policy framework for the conduct of SIA are made. The recommendations advocate for a higher profile of SIA within legislation, for social issues to have greater emphasis in official guidelines for the conduct of EIA and SIA, and for a range of measures to increase the professionalism of SIA practice.  相似文献   

19.
20.
The concentrations, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 30 agricultural soil and 16 vegetable samples collected from subtropical Shunde area, an important manufacturing center in China. The total PAHs ranged from 33.7 to 350 μg/kg in soils, and 82 to 1,258 μg/kg in vegetables. The most abundant individual PAHs are phenanthrene, fluoranthene, chrysene, pyrene and benzo(b)fluoranthene for soil samples, and anthracene, naphthalene, phenanthrene, pyrene and chrysene for vegetable samples. Average vegetable–soil ratios of total PAHs were 2.20 for leafy vegetables and 1.27 for fruity vegetables. Total PAHs in vegetable samples are not significantly correlated to those in corresponding soil samples. Principal component analyses were conducted to distinguish samples on basis of their distribution in each town, soil type and vegetable specie. Relatively abundant soil PAHs were found in town Jun’an, Beijiao, Chencun, Lecong and Ronggui, while abundant vegetable PAHs were observed in town Jun’an, Lecong, Xingtan, Daliang and Chenchun. The highest level of total PAHs were found in vegetable soil, followed by pond sediment and “stacked soil” on pond banks. The PAHs contents in leafy vegetables are higher than those in fruity vegetables. Some PAH compound ratios suggest the PAHs derived from incomplete combustion of petroleum, coal and refuse from power generation and ceramic manufacturing, and paint spraying on furniture, as well as sewage irrigation from textile industries. Soil PAHs contents have significant logarithmic correlation with total organic carbon, which demonstrates the importance of soil organic matter as sorbent to prevent losses of PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号