首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Codling EA  Pitchford JW  Simpson SD 《Ecology》2007,88(7):1864-1870
Traditional studies of animal navigation over both long and short distances have usually considered the orientation ability of the individual only, without reference to the implications of group membership. However, recent work has suggested that being in a group can significantly improve the ability of an individual to align toward and reach a target direction or point, even when all group members have limited navigational ability and there are no leaders. This effect is known as the "many-wrongs principle" since the large number of individual navigational errors across the group are suppressed by interactions and group cohesion. In this paper, we simulate the many-wrongs principle using a simple individual-based model of movement based on a biased random walk that includes group interactions. We study the ability of the group as a whole to reach a target given different levels of individual navigation error, group size, interaction radius, and environmental turbulence. In scenarios with low levels of environmental turbulence, simulation results demonstrate a navigational benefit from group membership, particularly for small group sizes. In contrast, when movement takes place in a highly turbulent environment, simulation results suggest that the best strategy is to navigate as individuals rather than as a group.  相似文献   

2.
Locust swarms are spectacular and damaging manifestations of animal collective movement. Here, we capture fundamental features of locust mass movement in the field, including a strongly non-linear relationship between collective alignment and density known only from earlier theoretical models and laboratory experiments. Migratory bands had a distinct structure, with a single high-density peak at the front, where collective alignment was high, followed by an exponential decay in density. As predicted by theory, alignment decreased with decreasing density, and fluctuations of movement direction became large until order amongst group members at the back of the band was totally lost. Remarkably, we found that the coordinated movement of migratory bands, which can be several kilometres wide and contain many millions of individuals, results from interactions occurring at a scale of 13.5 cm or less. Our results indicate that locust band structure and dynamics differ markedly from what is known (or assumed) about other large moving groups such as fish schools or bird flocks, yet they still conform to key general predictions made by collective movement models that explain how billions of individuals can align using local interactions.  相似文献   

3.
The emergence of unshared consensus decisions in bottlenose dolphins   总被引:1,自引:1,他引:0  
Unshared consensus decision-making processes, in which one or a small number of individuals make the decision for the rest of a group, are rarely documented. However, this mechanism can be beneficial for all group members when one individual has greater knowledge about the benefits of the decision than other group members. Such decisions are reached during certain activity shifts within the population of bottlenose dolphins residing in Doubtful Sound, New Zealand. Behavioral signals are performed by one individual and seem to precipitate shifts in the behavior of the entire group: males perform side flops and initiate traveling bouts while females perform upside-down lobtails and terminate traveling bouts. However, these signals are not observed at all activity shifts. We find that, while side flops were performed by males that have greater knowledge than other male group members, this was not the case for females performing upside-down lobtails. The reason for this could have been that a generally high knowledge about the optimal timing of travel terminations rendered it less important which individual female made the decision. This contribution is part of the special issue “Social Networks: new perspectives” (Guest Editors: J. Krause, D. Lusseau and R. James).  相似文献   

4.
Though studies have modeled the effects of fires on elk, no studies have related the effects of post-fire landscape succession on ungulate movements and distribution using dynamic modeling techniques. The purpose of this study was to develop and test a spatially-explicit, stochastic, individual-based model (IBM) to evaluate potential movement and distribution patterns of elk (Cervus elaphus nelsoni) in relation to spatial and temporal aspects of the Cerro Grande Fire that burned north central New Mexico in May of 2000. Following extensive literature review, the SAVANNA Ecosystem Model was selected to simulate the underlying post-fire successional processes driving elk movement and distribution. Standard logisitic regression was used to analyze habitat-use patterns of ten elk from data collected using global positioning system radio collars while an additional five animals were used as an independent test set during model validation. Static variables in the form of roads, buildings, fences, and habitual use/memory were used to modify a map of impedance values based on the logistic regression of slope, aspect, and elevation. Integration with SAVANNA came through the application of a habitat suitability index (HSI), which combined movement rules written for the IBM and variables modified and produced by the dynamic ecological processes run in SAVANNA. Overall pattern analysis indicated that realistic migrational processes and habitat-use patterns emerged from movement rules incorporated into the IBM in response to advancing and receding snow when compared to the independent test set. Primary and secondary movement pathways emerged from the collective responses of simulated individuals. Using regression analyses, no significant differences between simulated animals and animals used in either model development or an independent test set revealed any differences in response to snow patterns. These considerations suggest the model was adequately corroborated based on existing data and outlined objectives.  相似文献   

5.
We explored the utility of incorporating easily measured, biologically realistic movement rules into simple models of dispersal. We depart from traditional random walk models by designing an individual-based simulation model where we decompose animal movement into three separate processes: emigration, between-patch movement, and immigration behaviour. These processes were quantified using experiments on the omnivorous insect Dicyphus hesperus moving through a tomato greenhouse. We compare the predictions of the individual-based model, along with a series of biased random walk models, against an independent experimental release of D. hesperus. We find that in this system, the short-term dispersal of these insects is described well by our individual-based model, but can also be described by a 2D grid-based biased random walk model when mortality is accounted for.  相似文献   

6.
Similarity among group members may serve as a defence against visually hunting predators that preferentially attack individuals who are phenotypically different from the group majority. The presence of such odd individuals in an otherwise homogeneous group may, however, increase the vulnerability of the other group members as well. Individuals might thus be expected to form uniform groups in order to decrease predation risk, not only in trying to avoid being odd in a group, but also when attempting to avoid being accompanied by odd individuals. This hypothesis was tested with small and large three-spined sticklebacks, Gasterosteus aculeatus. Focal fish were offered the choice between a shoal consisting of conspecifics that were all similar in body length to the focal fish (matching shoal) and a shoal in which one or a few individuals differed in body length from the focal fish (non-matching shoal). In the control experiment, all individuals in the non-matching shoal differed in size from the focal fish. The control confirmed that individuals preferably joined the matching shoal when the alternative option was to be odd in another one. However, when the alternative for size-assortative shoaling was to belong to the majority in a mixed shoal, the shoal choice of individuals appeared on average to be random. Visual contact with a live pike, Esox lucius, did not affect the shoal choice pattern. Furthermore, despite the frequency-dependent nature of the oddity effect, varying the number of odd individuals in the non-matching shoal did not have a significant effect on individual's shoaling decisions. These results suggest that size-assortativeness in fish shoals is not a result of individuals avoiding being among the majority in a mixed group. Received: 2 September 1998 / Received in revised form: 12 May 1999 / Accepted: 29 May 1999  相似文献   

7.
The success of a social group is often driven by its collective characteristics and the traits of its individuals. Thus, understanding how collective behavior is influenced by the behavioral composition of group members is an important first step to understand the ecology of collective personalities. Here, we investigated how the efficiency of several group behaviors is influenced by the aggressiveness of its members in two species of Temnothorax ants. In our manipulation of group composition, we created two experimentally reconstituted groups in a split-colony design, i.e., each colony was split into an aggressive and a docile group of equal sizes. We found strong species-specific differences in how collective behaviors were influenced by its group members. In Temnothorax longispinosus, having more aggressive individuals improved colony defense and nest relocation efficiency. In addition, source colony identity strongly influenced group behavior in T. longispinosus, highlighting that manipulations of group compositions must control for the origin of the chosen individuals. In contrast, group composition and source colony did not influence collective behaviors in Temnothorax curvispinosus. This suggests that the mechanisms regulating collective behaviors via individual differences in behavior might differ among even closely related species.  相似文献   

8.
Individuals which deviate from the majority in groups are likely to be most vulnerable to predation. This oddity effect, by definition, is frequency dependent, eventually fading at equal frequencies of the phenotypes in a group. It has been hypothesized that the increased predation risk of odd individuals may play an important role in the formation of phenotypically uniform shoals of fish. However, recent work has indicated that individuals may experience, or value, their predation hazard differently depending on their own size in relation to that of other group members: single large fish, but not small ones, appear concerned about their oddity in a shoal. Here I show that the apparent wariness of large fish is also expressed in a frequency-dependent manner, closely conforming to what is predicted if the oddity effect is responsible for their behavior. Using foraging activity of individuals as a means to evaluate their predation risk, I demonstrate with shoals comprising 12 threespine sticklebacks (Gasterosteus aculeatus) that large fish forage least actively when in a shoal consisting of 2 large and 10 small fish. An increase in the number of large fish to 4 among 8 small individuals clearly results in an increase in their foraging activity. However, having reached an equal frequency with small fish in a shoal, large fish do not seem to change their foraging activity much even when their number in a shoal increases further. In contrast, foraging activity of small sticklebacks remains fairly constant throughout the entire range of tested shoal compositions, providing further evidence that small and large fish respond to their oddity differently. Received: 12 February 1998 / Accepted after revision: 7 May 1998  相似文献   

9.
Two computational methods were applied to classification of movement patterns of zebrafish (Danio rerio) to elucidate Markov processes in behavioral changes before and after treatment of formaldehyde (0.1 mg/L) in semi-natural conditions. The complex data of the movement tracks were initially classified by the Self-organizing map (SOM) to present different behavioral states of test individuals. Transition probabilities between behavioral states were further evaluated to fit Markov processes by using the hidden Markov model (HMM). Emission transition probability was also obtained from the observed variables (i.e., speed) for training with the HMM. Experimental transition and emission probability matrices were successfully estimated with the HMM for recognizing sequences of behavioral states with accuracy rates in acceptable ranges at central and boundary zones before (77.3-81.2%) and after (70.1-76.5%) treatment. A heuristic algorithm and a Markov model were efficiently combined to analyze movement patterns and could be a means of in situ behavioral monitoring tool.  相似文献   

10.
Spider monkeys (Ateles spp.) live in social groups that exhibit high levels of fission–fusion dynamics, in which group members form subgroups of varying sizes and compositions. Within these fluid societies, how individuals establish contact with dispersed group members with whom they might choose to associate remains unclear. Long-range vocalizations might facilitate interactions between group members and provide a means of social coordination in fission–fusion societies. We evaluated this possibility for one spider monkey vocalization, the loud call, by examining calling behavior, the relationship between loud calls and changes in subgroup size, and the response of individuals to distant calls and playback experiments in a single study group. We found that 82 % of loud calls were emitted within 30 min of a call from a different location, suggesting that individuals frequently emit loud calls in response to the calls of distant group members. Subgroups that emitted loud calls, especially those that responded to distant calls, were much more likely to experience an increase in subgroup size within an hour after calling than those that did not. Animals also approached distant loud calls more than they avoided or ignored these calls. Finally, playbacks of male calls demonstrated that females respond preferentially to the calls of some individuals over others. Taken together, these results provide support for the hypothesis that spider monkey loud calls function to facilitate and initiate interactions between dispersed group members and suggest that vocal signals can play an important role in influencing social interactions in fission–fusion societies.  相似文献   

11.
In many group-living animals, leadership by only a fraction of the group members can be important for group navigation. It has been shown that subgroups of informed individuals can steer the remainder of the group without direct communication, resolving conflicts of interest through individual-to-individual interactions. We present a model for the navigation of collectively moving groups that includes preferential interactions between individuals as a way of imposing social network structures, known to be present in many species. We show that effective leadership can occur when leaders do not occupy frontal spatial positions and when navigation tendency is appropriately balanced with social position. Our model also shows that small minorities can dominate movement decisions if they have navigational knowledge combined with influential social network positions. Our findings highlight the mechanistic importance of social networks for the movement decisions of animal groups. We discuss the implications of our research for interpreting empirical observations.  相似文献   

12.
The benefits of grouping behaviour may not be equally distributed across all individuals within a group, leading to conflict over group membership among established group members, and between residents and outsiders attempting to join a group. Although the interaction between the preferences of joining individuals and existing group members may exert considerable pressure on group structure, empirical work on group living to date has focussed on free entry groups, in which all individuals are permitted entry. Using the humbug damselfish, Dascyllus aruanus, we examined a restricted entry grouping system, in which group residents control membership by aggressively rejecting potential new members. We found that the preferences shown by joining members were not always aligned with strategies that incurred the least harm from resident group members, suggesting a conflict between the preferences of residents and preferences of group joiners. Solitary fish preferred to join familiar groups and groups of size-matched residents. Residents were less aggressive towards familiar group joiners. However, resident aggression towards unfamiliar individuals depended on the size of the joining individual, the size of the resident and the composition of the group. These results demonstrate that animal group structure is mediated by both the preferences of joining individuals and the preferences of residents.  相似文献   

13.
We studied the impact of group size on foraging behaviour and level of movement synchronisation among female herdmates of a fallow deer population in Central Italy. Both proportion of foraging events and movement synchronisation decreased with increasing group size. The proportion of foraging events was higher for animals on the edge of the group than for deer in the centre of the group; hence, there appears to be a trade-off between protection against predators and foraging interference, both of which decrease from the centre to the periphery of the group. This is the first time this type of behaviour has been recorded for wild ungulates. As expected, we also found that the movement of peripheral animals was less synchronised than that of central animals. Consequently, peripheral animals may lose contact with their herdmates and split off the group. We conclude that social inequalities may lead to conflicting requirements among group members and instability of large groups. Movement synchronisation (as a function of group size) appears to interact with habitat openness to produce variations of group size (which appear to be adaptive for individuals) as an emergent property of these aggregations.  相似文献   

14.
Leadership by specific individuals is thought to enhance the fitness of followers by allowing them to take advantage of the knowledge or skills of key individuals. In general, consistent leadership is expected to occur primarily in stable groups of related individuals where the benefits enhance the inclusive fitness of a leader. Societies with less stability in group composition (i.e., fission–fusion groups) are less likely to feature unshared decision making. However, in situations where frequent interactions among individuals occur (e.g., small population size and small range of movement) and/or the complexity of the environment requires substantial experience and knowledge, consistent leadership might be expected. We tested if a highly dynamic fission–fusion population of bottlenose dolphins (Tursiops truncatus), inhabiting a complex environment, exhibited leadership when traveling. A small number of specific individuals led group travel more often than expected by chance, and were more likely to initiate successful direction changes of groups than following individuals. The number of leaders in a group remained relatively constant across a wide range of group sizes and was not affected by the number of potential leaders (i.e., those that had led previously) present in the group. Together, these results suggest that leadership can occur in species with high rates of group fission and fusion. Therefore, the loss of key individuals could have disproportionate effects on population dynamics.  相似文献   

15.
《Ecological modelling》2007,200(1-2):79-88
The movement of organisms is usually leptokurtic in which some individuals move long distances while the majority remains at or near the area they are released. There has been extensive research into the origin of such leptokurtic movement, but one important aspect that has been overlooked is that the foraging behaviour of most organisms is not Brownian as assumed in most existing models. In this paper we show that such non-Brownian foraging indeed gives rise to leptokurtic distribution. We first present a general random walk model to describe the organism movement by breaking the foraging of each individual into events of active movement and inactive stationary period; its foraging behaviour is therefore fully characterized by a joint probability of how far the individual can move in each active movement and the duration it remains stationary between two consecutive movements. The spatio-temporal distribution of the organism can be described by a generalized partial differential equation, and the leptokurtic distribution is a special case when the stationary period is not exponentially distributed. Empirical observations of some organisms living in different habitats indicated that their rest time shows a power-law distribution, and we speculate that this is general for other organisms. This leads to a fractional diffusion equation with three parameters to characterize the distributions of stationary period and movement distance. A method to estimate the parameters from empirical data is given, and we apply the model to simulate the movement of two organisms living in different habitats: a stream fish (Cyprinidae: Nocomis leptocephalus) in water, and a root-feeding weevil, Sitona lepidus in the soil. Comparison of the simulations with the measured data shows close agreement. This has an important implication in ecology that the leptokurtic distribution observed at population level does not necessarily mean population heterogeneity as most existing models suggested, in which the population consists of different phenotypes; instead, a homogeneous population moving in homogeneous habitat can also lead to leptokurtic distribution.  相似文献   

16.
Prey that are capable of continuously learning the identity of new predators whilst adjusting the intensity of their responses to match their level of risk, are often at a substantive advantage. Learning about predators can occur through direct experience or through social learning from experienced individuals. Social learning provides individuals with an effective means of acquiring information while reducing the costs associated with direct learning. Under a natural setting, social learning is likely to occur between more than two individuals. As such, investigating the effect that group size has on the ability of individuals to acquire information is vital to understanding social learning dynamics. Given the characteristics of coral reefs and the biology of coral reef fishes, these habitats are an ideal medium to test whether group size affects the transmission of information. Using newly settled damselfish (Pomacentrus amboinensis), we examined whether the number of observers present influences transmission of information. We showed that: (1) predator recognition is socially transmitted from predator-experienced to predator-naïve individuals regardless of group size, and that (2) the level of response displayed by the observer does not differ following learning in different sized groups. Our study highlights that information on predator identities is able to be passed onto group members quickly without a dilution of information content.  相似文献   

17.
R. Röttger 《Marine Biology》1972,17(3):228-242
Chamber formation in individuals of the large foraminifer Heterostegina depressa was studied with the intention of explaining the different shapes of growth curves established for groups of individuals. The material was derived from clone cultures and from the natural habitat. Chamber formation was observed by daily control of many individuals. The growth increments of a group of individuals depend mainly upon the frequency of chamber formation of the individuals, they also depend upon the percentage of growing individuals present and the sizes of chambers. Within a prolifically growing group, each individual builds a new chamber every second or third day, and 81 to 86% exhibit chamber-building activities. Further features of quickly growing individuals are: formation of chambers in a regular sequence, and short periods of rest between long periods of growth. During low illumination intensity and in darkness, growth of H. depressa may cease for several months (up to 81/2 months). Cessation of growth is connected with a marked reduction in all other physiological processes. After month-long inhibition of growth, different individuals responded with different growth behaviour under the same environmental conditions. For example, smaller individuals needed longer periods of physiological regeneration before building new chambers. Prior darkexposure resulted in intermittent growth in many individuals. Periods of rest were followed by periods of unusually intensive growth. Lower temperature resulted in a reduced frequency of chamber formation. The size of chambers, however, was not influenced; accordingly the shape of the test did not vary. Immediately after multiple fission, rapid growth begins. Growth curves of H. depressa, therefore, do not show initial periods of slow growth which is characteristic for general exponential growth. H. depressa exhibited sigmoidal growth curves only after periods of growth inhibition; it displayed typical regenerative growth. During these periods, up to 4 chambers in 4 days, or 9 chambers in 12 days, were built by 11-month-old individuals.  相似文献   

18.
Mass migration of locusts is an economically devastating and poorly understood phenomenon. Locust mass migration often follows rapid population growth because individuals must move to find new sources of locally depleted resources. In Mormon crickets and Desert locusts, cannibalistic interactions have been revealed as the driving force behind collective mass movement. Locusts are known to compensate for nutrient deficiencies and they themselves are a good source of nutrients such as protein. However, direct empirical evidence for an adaptive benefit of cannibalism in migratory bands has been lacking. Here, we first show that Australian plague locusts, Chortoicetes terminifera, will cannibalise vulnerable conspecifics to compensate for protein deprivation, supporting the notion that cannibalistic interactions among nutritionally deprived individuals drives collective mass movement. We then show that individuals in a group with the opportunity to cannibalise survive longer and move more than individuals without the opportunity to cannibalise. These results provide empirical support for the ??lifeboat mechanism??, which proposes that cannibalism offers the dual benefits to individuals in a group of surviving longer and travelling farther than a solitary individual without the opportunity to cannibalise.  相似文献   

19.
The movement of whelks, Buccinum undatum L., towards a food source was examined by releasing a large number of tagged individuals at 6 distances in each of four directions from a baited trap and recording their recovery in the trap. Eight such experiments were performed under a variety of conditions. The peak recapture of individuals released downstream at 2, 5, 10, 18, and 30 m from a baited trap was at 6 h, 6 h, 1 d, 2 d and 3 d, respectively. The area of attraction of a trap, the surface over which the whelks perceive and are drawn towards the bait, is usually irregularly shaped and determined mainly by current direction. In strong directional current it is elongated in the direction of the current and its size is much reduced. The area of attraction is also less at 20 m than at 10 m in depth. The size of the area of attraction varies seasonally due to behavioural changes probably associated with temperature and the whelk's reproduction. Isopleths of 25% capture of tagged whelks usually expand and become more rounded with time, probably reflecting the entry of whelks from outside the area of attraction.  相似文献   

20.
Odd fish abandon mixed-species groups when threatened   总被引:5,自引:0,他引:5  
Summary In a field experiment, two juvenile size classes of striped parrotfish (Scarus iserti), stoplight light parrotfish (Sparisoma viride), and ocean surgeonfish (Acanthurus bahianus) were threatened by a model of a common predator (the trumpetfish, Aulostomus maculatus) while alone and in mixedspecies groups of 3–100 members. Striped parrotfish, which usually consitute the majority of a group, used the groups for protection. Stopight parrotfish, present in very low numbers, hid in the coral. Individuals of both species left a group sooner if it had fewer conspecifics. Small surgeonfish sought protection in groups, while larger individuals too big to be consumed by the trumpetfish, swam away alone. These results may be explained by differences in the protection derived from mixed-species groups, and particularly, by the high predation risk suffered by odd individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号