首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A denuder technique for sampling and analysing nitrous acid at sub ppb levels in air is described. After sampling, the sodium carbonate coated denuder is leached in water, and the NO2 concentration is determined spectrophotometrically. Field tests show that PAN is partly sorbed and hydrolized to nitrite in the sodium carbonate layer. It seems as HNO2 also can be formed by heterogeneous reactions between NO and NO2 at the denuder wall. These sampling artifacts were overcome by sampling with two or three denuders in series. The presence of PAN deteriorates the detection limit, which during optimal conditions is about 0.5 nmole m−3 (0.01 ppb). The method is therefore not recommended for measurements in background air, where HNO2 concentrations normally are low compared to PAN concentrations.  相似文献   

2.
Ammonia, nitric acid, sulfur dioxide and particles in two size ranges were collected at a rural site in northeastern U.S. in January–March 1984. Ammonia was collected with an oxalic acid coated denuder, all other components were collected on filters. The concentrations of ammonia ranged between 0.0 and 0.5 ppbv, nitric acid: 0.1 and 2.3 ppbv and sulfur dioxide: 1 and 52 ppbv. Ammonium and sulfate in the fine particles were highly correlated, the regression line indicated that the most abundant compound was ammonium sulphate. The content of free hydronium ions in the fine particles was well below the ammonium content. No correlation between NH3 and NH+4, HNO3 and NO3 SO3 and SO−24 could be observed.  相似文献   

3.
ABSTRACT

Experiments on different annular denuder system (ADS)arrangements for sampling nitrous acid (HNO2) and ni-tric acid (HNO3) gases were conducted in this study toevaluate their sampling artifacts. The evaluation basis isthe one that employed one sodium chloride denuder forsampling HNO3 gas and two sodium carbonate (Na2CO3)denuders for sampling HNO2 gas, which is a commonlyemployed ADS arrangement in many field applicationsin the United States. A field study was conducted inHsinchu, Taiwan, and the results indicated that this ADSarrangement may yield over 80% relative errors for HNO3gas. It also showed that the relative errors for HNO2 gascan be less than 10% as sampled with only one Na2CO3denuder. This is attributed to the fact that the ambientHNO3 concentration measured in this study was relativelylow while the HNO2 concentration was high, as comparedto typical concentrations of these two gases measured inthe United States.

The sampling error of HNO3 gas may be due to highconcentrations of N-containing interfering speciespresent in Taiwan’s atmosphere. Because the relative sam-pling errors of HNO3 and HNO2 gases depend mainly ontheir concentrations in the atmosphere as well as con-centrations caused by interfering species, the risk for higherror while measuring low HNO2 concentrations by onlyone Na2CO3 denuder is also possible. As a result, it is sug-gested that pretests are necessary to evaluate possiblesources and degrees of sampling errors before fieldsampling of HNO2 and HNO3 gases. The sampling errorsof these two gases can, therefore, be minimized with abetter arrangement of the ADS.  相似文献   

4.
ABSTRACT

Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatiliza-tion of NH4NO3 is generally negligible for both samplers.4 3Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found3to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within ±15%. A possible cause of the difference in HNO3 con-3centrations is due to a greater loss of HNO3 in the cyclone3 used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon3filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by3the nylon filters need further investigation.  相似文献   

5.
A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks (CASTNet and Acid-MODES) and using duplicate annular denuder systems (ADS). Precision estimates for most of the measured species are similar for weekly ADS and composited FPs. There is generally good agreement between the weekly CASTNet FP results aggregated from weekly daytime and weekly nighttime samples and those aggregated from daily 24 h Acid-MODES samples; although SO2 is the exception, and CASTNet concentrations are higher than Acid-MODES. Comparison of weekly ADS results with composited weekly FP results from CASTNet shows good agreement for SO2-4. With the exception of the two weeks where the FP exceeded the ADS, both HNO3 and the sum of particulate and gaseous NO-3 show good agreement. The FP often provides good estimates of HNO3, but when used to sample atmospheres that have experienced substantial photochemical reactivity, FP HNO3 determinations using nylon filters may be biased high. It is suggested that HNO2 or some other oxidized nitrogen compound can accumulate on a regional scale and may interfere with the FP determination of HNO3. FP particulate NO-3 results are in fair agreement with the ADS. Since FP SO2 results are biased low by 12–20%, SO2 concentration in the CASTNet data archive should be adjusted upward. Nylon presents problems as a sampling medium in terms of SO2 recovery and specificity for HNO3. Additional comparative sampler evaluation studies are recommended at several sites over each season to permit comprehensive assessment of the concentrations of atmospheric trace constituents archived by CASTNet.  相似文献   

6.
The annular denuder system (ADS) was used to characterize seasonal variations of acidic air pollutants in Seoul, South Korea. Fifty- four 24 h samples were collected over four seasons from October 1996 to September 1997. The annual mean concentrations of HNO3, HNO2, SO2 and NH3 in the gas phase were 1.09, 4.51, 17.3 and 4.34 μg m-3, respectively. The annual mean concentrations of PM2.5(dp≤2.5 μm in aerodynamic diameter, 50% cutoff), SO2-4, NO-3 and NH+4 in the particulate phase were 56.9, 8.70, 5.97 and 4.19 μg m-3, respectively. All chemical species monitored from this study showed statistical seasonal variations. Nitric acid (HNO3) and ammonia (NH3) exhibited substantially higher concentrations during the summer, while nitrous acid (HNO2) and sulfur dioxide(SO2) were higher during the winter. Concentrations of PM2.5, SO2-4, NO-3 and NH+4 in the particulate phase were higher during the winter months. SO2-4, NO-3 and NH+4 accounted for 26–38% of PM2.5. High correlations were found among PM2.5, SO2-4, NO-3 and NH+4. The mean H+ concentration measured only in the fall was 5.19 nmole m-3.  相似文献   

7.
A field evaluation between two annular denuder configurations was conducted during the spring of 2003 in the marine Arctic at Ny-Ålesund, Svalbard. The IIA annular denuder system (ADS) employed a series of five single-channel annular denuders, a cyclone and a filter pack to discriminate between gas and aerosol species, while the EPA-Versatile Air Pollution Sampler (VAPS) configuration used a single multi-channel annular denuder to protect the integrity of PM2.5 sample filters by collecting acidic gases. We compared the concentrations of gaseous nitric acid (HNO3), nitrous acid (HONO), sulfur dioxide (SO2) and hydrochloric acid (HCl) measured by the two systems. Results for HNO3 and SO2 suggested losses of gas phase species within the EPA-VAPS inlet surfaces due to low temperatures, high relative humidities, and coarse particle sea-salt deposition to the VAPS inlet during sampling. The difference in HNO3 concentrations (55%) between the two data sets might also be due to the reaction between HNO3 and NaCl on inlet surfaces within the EPA-VAPS system. Furthermore, we detected the release of HCl from marine aerosol particles in the EPA-VAPS inlet during sampling contributing to higher observed concentrations. Based on this work we present recommendations on the application of denuder sampling techniques for low-concentration gaseous species in Arctic and remote marine locations to minimize sampling biases. We suggest an annular denuder technique without a large surface area inlet device in order to minimize retention and/or production of gaseous atmospheric pollutants during sampling.  相似文献   

8.
9.
Abstract

The U.S. Environmental Protection Agency Clean Air Status and Trends Network (CASTNET) utilizes an open-face filter pack system to measure concentrations of atmospheric sulfur and nitrogen species. Concentration data for nitrogen species measured with filter pack systems sometimes deviate from data collected by other measurement systems used to measure the same species. The nature of these differences suggests that more than one sampling mechanism or atmospheric process is involved. The study presented here examines these differences by intercomparing CASTNET data with data from other studies, examining the results from earlier intercomparison studies, and conducting a field test to investigate the effect of particle size on filter pack measurement systems. Measurements of nitrogen species from the Maryland Aerosol Research and Characterization (MARCH) monitoring site were compared with nitrogen concentrations at three nearby CASTNET sites. Results indicate that CASTNET measured higher particulate nitrate (NO3 -) and lower gaseous nitric acid (HNO3) concentrations. Comparisons of NO3 - from 34 collocated CASTNET and Inter-agency Monitoring of Protected Visual Environments (IMPROVE) sites show that CASTNET NO3 - measurements were typically higher than the corresponding IM PROVE values. Also, results from the Lake Michigan Air Director’s Consortium Midwest Ammonia Monitoring Project demonstrated NO3 - dissociation on Teflon filters. To investigate the effect of particle size, filter pack measurement systems were operated at three CASTNET sites with and without cyclones during six 7-day measurement periods from March to August 2006. Results indicate the size-selection cyclones had a significant effect on both NO3 - and HNO3 concentrations, but little effect on sulfate (SO4 2-) and ammonium (NH4 +) levels. NO3 - concentrations sampled with the open-face filters were significantly higher than concentrations measured with a 2.5-μm cut point, as were HNO3 concentrations. Although limited in spatial and temporal coverage, the field study showed that the use of an open-face filter pack may allow for the collection of coarse NO3 - particles and for the reaction of HNO3 with metals/salts on the Teflon filter.  相似文献   

10.
Abstract

Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996–1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by ~17%, 35% for SO4 2?, and 29% for NH4 +, whereas NO3 ? increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 μg/m-3, accounting for ~26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer.

Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3 ?, SO4 2?, NH4 +, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.  相似文献   

11.
A chamber placed in a constant temperature freezing room was used to study the surface resistance during deposition of HNO3 to a snow surface. The resistance decreased with increasing temperature from larger than 5 s mm−1 at − 18°C to about l s mm−1 at −3°C. Measurements of gaseous and particulate nitrate concentrations during winter at a rural site in south central Sweden gave concentrations in the range of 0.4–5 μg HNO3 m−1 and 0.3–3 μg NO3 m−3 with a mean value of 1.3 μg HNO3 m−3 and 0.7 μg NO3 m−3, respectively. The results indicate that for periods with temperatures below − 2°C estimated dry deposition of HNO3 to snow is at most 4 % of measured wet deposition of nitrate in the area.  相似文献   

12.
ABSTRACT

A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process.

Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%.

Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS.  相似文献   

13.
In order to develop a diffusion denuder for the removal of NO2 from ambient atmospheric samples, a number of materials were screened for their ability to adsorb NO2:
  • 1.(1) MgO;
  • 2.(2) MnO2 on alpha-Al2O3;
  • 3.(3) water-treated MnO2 on alpha-Al2O3; and
  • 4.(4) MnO2 (activated).
A simple cylindrical denuder coated with MnO2 (activated) was very effective in the removal of NO2 from a feedgas of NO2 in air at ambient temperature and pressure. The other materials were unsatisfactory. The strong oxidizing properties, along with the hydrated surface of the MnO2 (activated), appear to be important for the sorption of NO2, as suggested in applications elsewhere. Quantification of denuder sorption efficiencies indicates that MnO2 (activated) is nearly a perfect sorbent for NO2. The diffusion coefficient of NO2 in air was found to be 10.8 ± 0.3 cm2 min−1 at 22–23°C, which compares favourably with a theoretical estimate. Although MnO2 (activated)-coated denuders were also found to adsorb SO2, interference with NO2 sorption was not sufficient to impair ambient applications.  相似文献   

14.
Deposition of nitric acid (HNO3) vapor to soils has been evaluated in three experimental settings: (1) continuously stirred tank reactors with the pollutant added to clean air, (2) open-top chambers at high ambient levels of pollution with and without filtration reducing particulate nitrate levels, (3) two field sites with high or low pollution loads in the coastal sage plant community of southern California. The results from experiment (1) indicated that the amount of extractable NO3 from isolated sand, silt and clay fractions increased with atmospheric concentration and duration of exposure. After 32 days, the highest absorption of HNO3 was determined for clay, followed by silt and sand. While the sand and silt fractions showed a tendency to saturate, the clay samples did not after 32 days of exposure under highly polluted conditions. Absorption of HNO3 occurred mainly in the top 1 mm layer of the soil samples and the presence of water increased HNO3 absorption by about 2-fold. Experiment (2) indicated that the presence of coarse particulate NO3 could effectively block absorption sites of soils for HNO3 vapor. Experiment (3) showed that soil samples collected from open sites had about 2.5 more extractable NO3 as compared to samples collected from beneath shrub canopies. The difference in NO3 occurred only in the upper 1–2 cm as no significant differences in NO3 concentrations were found in the 2–5 cm soil layers. Extractable NO3 from surface soils collected from a low-pollution site ranged between 1 and 8 μg NO3–N g−1, compared to a maximum of 42 μg NO3–N g−1 for soils collected from a highly polluted site. Highly significant relationship between HNO3 vapor doses and its accumulation in the upper layers of soils indicates that carefully prepared soil samples (especially clay fraction) may be useful as passive samplers for evaluation of ambient concentrations of HNO3 vapor.  相似文献   

15.
Measurements of ammonia and particulate ammonium were made in the daytime (1200–1500) at a urban site in Yokohama during the 5-year period, 1982–1986. Diurnal NH3 concentrations showed a distinct seasonal trend with a maximum in summer. The diurnal monthly average concentrations were above 10 ppb during the late spring and summer months, while the concentrations during the winter months were between 1 and 5 ppb. The seasonal variation was found to be very similar to that of the average air temperature and showed a periodic pattern over 1 year. A good correlation was observed between diurnal NH3 concentrations and average air temperatures during the 5-year period. The annual mean concentrations were in the range of 6.6–7.6 ppb with only a minor deviation. The diurnal monthly average concentrations of particulate NH4+ were between 1 and 4 μg m−3 and no significant seasonal variations were seen. As a short-term study, simultaneous measurements of NH3, HNO3 and particulate NO3 were made. The diurnal mean concentrations of NH3 and HNO3 were 7.6 and 0.8 ppb, respectively. The concentration of particulate NO3 ranged from 0.3 to 6μg−3. Both HNO3 and particulate NO3 concentrations were relatively low and constant. Thus, NH3 and HNO3 levels did not agree with the concentrations predicted from the NH4NO3 equilibrium constant.  相似文献   

16.
In situ measurements of nitric acid (HNO3), reactive nitrogen (NOy), nitric oxide (NO), and ozone (O3) made in the upper troposphere (UT) and lower stratosphere (LS) between 29° and 33°N latitudes during September 1999 are used to examine NOy partitioning and correlations between the measured species in these regions. The fast-response (1 s) HNO3 measurements are acquired with a new autonomous CIMS instrument. In the LS, HNO3 accounts for the majority of NOy, and the sum of HNO3 and NOx accounts for approximately 90% of NOy. In the UT, the sum of HNO3 and NOx varies between 40% and 100% of NOy. Both HNO3 and NOy are strongly positively correlated with O3, with larger correlation slopes in the UT than in the LS. In the UT at low values of the quantity (NOy–NOx–HNO3), it is uncorrelated with O3, while at higher values, a positive correlation with O3 is found. Of these two air mass types, those with higher (NOy–NOx–HNO3) mixing ratios are likely associated with the presence of peroxyacetyl nitrate (PAN) that is produced by NOx-hydrocarbon chemistry.  相似文献   

17.
A fast response analyzer for HNO3 in highly polluted air is described. The time resolution attainable was 12 s. The method is based on the difference in a technique for HNO3-scrubbed and non-scrubbed air and the reduction of HNO3 to NO with the use of a line of catalytic converters and a method for the subsequent NO-ozone chemiluminescence. A sample air stream, in which particulates are removed with a Teflon filter, is divided into two channels. CH-1 is directly connected to the converter line, and CH-2 contains a HNO3 scrubber packed with a nylon fiber that goes to another converter line. Each converter line is composed of a hot quartz-bead converter (QBC) and a molybdenum converter (MC) in a series. A QBC reduces HNO3 to (NO+NO2), which is called NOx. The MC reduces the NOx to NO.For CH-1, the analyzer detects most compounds that typically comprise NOy (J. Geophys. Res. 91 (1986) 9781). These CH-1 compounds are called NOy′ hereafter (NOy-particulate nitrate) because the particulates are removed by the filter. A difference in the detector signal for the two channels indicates HNO3. For a blank test, atmospheric air in which HNO3 was pre-scrubbed by an extra nylon fiber was introduced to the analyzer. Variations in the blank value were 0.38±0.42 and 0.34±0.55 ppb during the high readings (NOy′-HNO3 ) (called NOy* hereafter) (111±12 ppb, N=180), and low NOy* readings (62±8 ppb, N=180), respectively, indicating that the lowest detection limit of the analyzer is 1.1 ppb (2σ). When the data obtained with the analyzer is compared to the data using the denuder method, a linear correlation with the regression of Y=0.973X+0.077 (r2=0.916 (N=20)) in the range of 0–6.5 ppb HNO3 is obtained, which is an excellent agreement. Atmospheric monitoring was carried out at Kobe. Although the average concentration of HNO3 was 2.6±1.3 ppb, ca.10 ppb for a HNO3 concentration was occasionally observed when the NOy* concentration was high, i.e., more than 100 ppb.  相似文献   

18.
A new sampling device is described for the simultaneous collection of NH3, HNO3, HCl, SO2 and H2O2 in ambient air. The apparatus is based on air sampling by two parallel annular denuder tubes. The gases are collected by absorption in solutions present in the annulus of the denuder tubes. After a sampling time of 30 min at flow rate of 32 ℓ min−1 the solutions are extracted from the denuders and analyzed off-line. The detection limits of NH3, HNO3, HCL and SO2 are in the order of 0.1–0.5 μm−3. For H2O2 the detection limit is 0.01 μm−3. The reproducibility is 5–10% at the level of ambient air concentrations. Comparison of this novel technique with existing methods gives satisfactory results. The compact set-up offers the possibility of field experiments without the need of extensive equipment.  相似文献   

19.
A DeHavilland DHC-6 Twin Otter, operated by the National Oceanic and Atmospheric Administration, was deployed in Tampa, FL to measure aerosols and primary and secondary trace gases in support of the Bay Regional Atmospheric Chemistry Experiment (BRACE). The Twin Otter repeatedly overflew the surface chemistry monitoring super site near Sydney, FL to assess the comparability of surface and airborne datasets and the spatial representativeness of the surface measurements. Prior to comparing the chemical datasets, we evaluated the comparability of the standards used to calibrate surface and airborne detectors, as well as the uniformity of wind fields aloft and at the surface. Under easterly flow, when the dearth of significant upwind emission sources promoted chemical homogeneity at Sydney, trace gas concentrations at the surface and aloft were generally well correlated; R2 ranged from 0.4396 for H2O2 to 0.9738 for O3, and was typically better than 0.70 for NO, NO2, NOY, HNO3, HCHO, and SO2. Mean ratios of aircraft-to-surface concentrations during 10 overflights of Sydney were as follows: 1.002±0.265 (NO), 0.948±0.183 (NO2), 1.010±0.214 (NOY), 0.941±0.263 (HCHO), and 0.952±0.046 (O3). Poorer agreement and larger variability in measured ratios were noted for SO2 (1.764±0.559), HNO3 (1.291±0.391), and H2O2 (1.200±0.657). Under easterly flow, surface measurements at Sydney were representative of conditions over horizontal scales as large as 50 km and agreed well with airborne values throughout the depth of the turbulently mixed boundary layer at mid-day. Westerly flow advected the Tampa urban plume over the site; under these conditions, as well as during transitional periods associated with the development of the land–sea breeze, surface conditions were representative of smaller spatial scales. Finally, we estimate possible errors in future measurement-model comparisons likely to arise from fine scale (or subgrid;<2 km) variability of trace gas concentrations. Large subgrid variations in concentration fields were observed downwind of large emission point sources, and persisted across multiple model grid cells (distances>4 km) in coherent plumes. Variability at the edges of the well-mixed urban plume, and at the interface of the land–sea breeze circulation, was significantly smaller. This suggests that even a failure of modeled wind fields to resolve the sea breeze return can induce moderate, but not overwhelming, errors in simulated concentration fields and dependent chemical processes.  相似文献   

20.
Concentrations of CO, SO2, NO, NO2, and NOY were measured atop the University of Houston's Moody Tower supersite during the 2006 TexAQS-II Radical and Aerosol Measurement Project (TRAMP). The lowest concentrations of all primary and secondary species were observed in clean marine air in southerly flow. SO2 concentrations were usually low, but increased dramatically in sporadic midday plumes advected from sources in the Houston Ship Channel (HSC), located NE of the site. Concentrations of CO and NOx displayed large diurnal variations in keeping with their co-emission by mobile sources in the Houston Metropolitan Area (HMA). CO/NOx emission ratios of 5.81 ± 0.94 were observed in the morning rush hour. Nighttime concentrations of NOx (NOx = NO + NO2) and NOY (NOY = NO + NO2 + NO3 + HNO3 + HONO + 21N2O5 + HO2NO2 + PANs + RONO2 + p-NO3? + …) were highest in winds from the NNW-NE due to emission from mobile sources. Median ratios of NOx/NOY were approximately 0.9 overnight, reflecting the persistence and/or generation of NOZ (NOZ = NOY ? NOx) species in the nighttime Houston boundary layer, and approached unity in the morning rush hour. Daytime concentrations of NOx and NOY were highest in winds from the HSC. NOx/NOY ratios reached their minimum values (median ca 0.63) from 1300 to 1500 CST, near local solar noon, and air masses often retained enough NOx to sustain additional O3 formation farther downwind. HNO3 and PANs comprised the dominant NOZ species in the HMA, and on a median basis represented 17–20% and 12–15% of NOY, respectively, at midday. Concentrations of HNO3, PANs, and NOZ, and fractional contributions of these species to NOY, were at a maximum in NE flow, reflecting the source strength and reactivity of precursor emissions in the HSC. As a result, daytime O3 concentrations were highest in air masses with HSC influence. Overall, our findings confirm the impact of the HSC as a dominant source region within the HMA. A comparison of total NOY measurements with the sum of measured NOY species (NOYi = NOx + HNO3 + PANs + HONO + p-NO3?) yielded excellent overall agreement during both day ([NOY](ppb) = ([NOYi](ppb)11.03 ± 0.16) ? 0.42; r2 = 0.9933) and night ([NOY](ppb) = ([NOYi](ppb)11.01 ± 0.16) + 0.18; r2 = 0.9975). A similar comparison between NOY–NOx concentrations and the sum of NOZi (NOZi = HNO3 + PANs + HONO + p-NO3?) yielded good overall agreement during the day ([NOZ](ppb) = ([NOZi](ppb)11.01 ± 0.30) + 0.044 ppb; r2 = 0.8527) and at night ([NOZ](ppb) = ([NOZi](ppb)11.12 ± 0.69) + 0.16 ppb; r2 = 0.6899). Median ratios of NOZ/NOZi were near unity during daylight hours but increased to approximately 1.2 overnight, a difference of 0.15–0.50 ppb. Differences between NOZ and NOZi rarely exceeded combined measurement uncertainties, and variations in NOZ/NOZi ratios may have resulted solely from errors in conversion efficiencies of NOY species and changes in NOY composition. However, nighttime NOZ/NOZi ratios and the magnitude of NOZ ? NOZi differences were generally consistent with recent observations of ClNO2 in the nocturnal Houston boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号