首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atmospheric chemical process was simulated using the Carbon Bond 4 (CB-4) model, the aqueous-phase chemistry in Regional Acid Deposition Model and the thermodynamic equilibrium relation of aerosols with the emission inventories of the Emission Database for Global Atmospheric Research, the database of China and South Korea and the Mesoscale Model version 2 (MM5) meteorological fields to examine the spatial distributions of the acidic pollutant concentrations in East Asia for the case of the long-lasting Yellow Sand event in April 1998. The present models simulate quite well the observed general trend and the diurnal variation of concentrations of gaseous pollutants, especially for O3 concentration. However, the model underestimates SO2 and NOx concentration but overestimates O3 concentration largely due to uncertainty in NOx and VOC emissions. It is found that the simulated gaseous pollutants such as SO2, NOx, and NH3 are not transported far away from the source regions but show significant diurnal variations of their concentrations. However, the daily variations of the concentrations are not significant due to invariant emission rates. On the other hand, concentrations of the transformed pollutants including SO42−, NH4+, and NO3 are found to have significant daily variations but little diurnal variations. The model-estimated deposition indicates that dry deposition is largely contributed by gaseous pollutants while wet deposition of pollutants is mainly contributed by the transformed pollutants.  相似文献   

2.
This paper reports on progress to date of an ongoing effort to develop, evaluate and apply a European Regional Model of Air Pollution (EURMAP). This model is capable of calculating longterm (monthly, seasonal and/or annual) averages of the contributions from SO2 in individual emittor countries to SO2 and SO42− concentrations, dry deposition and wet deposition in receptor countries. The model covers all of western and central Europe, a geographical area 2100 km × 2250 km in size. A trajectory-type approach is used, which involves the tracking of pollutant ‘puffs’ released from each emissions cell in an extensive 32 × 36 grid. Meteorological data in the form of wind and precipitation values from some 45 upper-air and 535 surface stations are input at 6-hourly intervals for use in the calculations of puff transport and wet deposition. A wet deposition coefficient is used that depends upon precipitation rate.The preliminary model has been used to calculate annualized as well as monthly mean maps for January, April, July and October 1973 of SO2 and SO42− concentration, dry deposition and wet deposition patterns resulting from SO2 emissions in 13 countries in western and central Europe. The dry and wet deposition patterns are presented, along with values of calculated international exchanges of SO2 and SO42− wet and dry deposition among these various countries. The EURMAP results are compared with those from Fisher's (1975) model and the LRTAP model (Ottar, 1978; OECD, 1977). In many (but not all) respects the results from the three models are similar. The possible reasons for the differences revealed by this comparison are examined.  相似文献   

3.
A statistical Lagrangian atmospheric transport model was used to generate annual maps of deposition of sulphur and oxidised and reduced nitrogen for the UK at a 5×5 km2 resolution. The model was run using emissions for the year 2002. The model was compared with measurements of gas concentrations (SO2, NOx, HNO3 and NH3) and of wet deposition and aerosol concentrations of SO42−, NO3 and NH4+ from national monitoring networks. Good correlation was obtained, demonstrating that the model is capable of accurately estimating the mass balance and spatial distribution of sulphur and nitrogen compounds in the atmosphere. A future emissions scenario for the year 2020 was used to test the influence of shipping emissions on sulphur deposition in the UK. The results show that, if shipping emissions are assumed to increase at a rate of 2.5% per year, their relative contribution to sulphur deposition is expected to increase from 9% to 28% between 2002 and 2020. The model was compared to both a European scale and a global scale chemical transport model and found to give broad agreement with the magnitude and location of sulphur deposition associated with shipping emissions. Enforcement of the MARPOL convention to reduce the sulphur content in marine fuel to 1% was estimated to result in a 6% reduction in total sulphur deposition to the UK for the year 2020. The percentage area of sensitive habitats with exceedance of critical loads for acidity in the UK was predicted to decrease by 1% with the implementation of the MARPOL convention.  相似文献   

4.
A three-dimensional, time dependent Eulerian transport/transformation/removal model for SOx, which has previously been described is applied to the eastern United States. Simulation results for a 72-h simulation using 4 July 1974 meteorological data consisting of 24-h averaged SO2 and sulfate contours, deposition contours, reaction rate contours, and diurnal SO2 and sulfate ground level profiles are presented and discussed. Substantial spatial and temporal variations in the distributions of SO2 and sulfate are predicted and results indicate that relatively detailed vertical resolution is necessary in studying the regional transport of SOx. The presented results illustrate the model's capability to simulate the interactions between emissions, transport, chemistry and surface removal.  相似文献   

5.
A 3-dimensional STEM-I Eulerian, regional scale transport/chemistry model for SO2 and sulfate is used to investigate the relationships between model predictions and the resolution and uncertainty in the emissions and dry deposition velocities. Model results for conditions of 4 July 1974 where the emissions are time modulated, where the emissions are increased and decreased, and where the dry deposition velocities are increased and decreased are presented and discussed.  相似文献   

6.
Daily sampling of acidity and sulphate in rain, air concentrations of SO2 and aerosol SO42−, and climatological variables for the period 1977 to 1981 at a site in southern Scotland are analysed. The properties of frequency distributions for wet deposited acidity, sulphate and rainfall, and the episodicity of each, are discussed. Up to 40% of annual wet deposited acidity occurred on < 4% of rain days, exceeding the episodicity of dry deposited SO2 by a factor of 3.Over the 5 year period, 16 % of rain events were more acid than pH 4.0 and 25 % less acid than pH 5.0; meteorological conditions associated with these extremes of the distribution showed marked differences. The most acid events were associated with large aerosol SO42− concentrations, small windspeeds and rainfall amounts, and 48-h surface geostrophic wind back-trajectories over industrial regions of the U.K. and/or Europe. The least acid events were associated with 48-h back-trajectories over the north Atlantic, larger windspeeds and rainfall amounts. The very acid events are well described by the frequency distribution of rainfall acidity.Artefacts in rainfall chemistry data caused by dry deposition on the collector are discussed with particular reference to the variation of SO42− concentration with rainfall amount.  相似文献   

7.
Wet and dry deposition as collected by a bucket were measured at two sites in southeastern Michigan for two years. The precipitation had an average pH of 4.27 and a SO2−4 to NO3 ratio of 2.0. Particulate dry deposition velocities of 0.6 cm s−1 for SO2−4 and NO3 and > 2 cm s−1 for Cl, Ca2+, Mg2+,Na+ and K+ were calculated. The ambient particle composition, dry bucket collection and wet deposition were compared at two sites, one urban and the other rural. Higher ambient particle concentrations and dry deposition rates were measured at the urban site than the rural site, indicating the influence of local emissions. However, local emissions had no effect on the wet deposition concentrations. The influence of more distant source regions was examined by separating the precipitation events by wind direction. The events from the south and east had the highest SO2−4 to NO3 ratios, which corresponded to the areas with the highest sulfur emissions. NO3 showed no directional dependence.Wet deposition was examined for the effect of storm type and seasonal trends. Contrary to a recent study on Long Island, we found higher concentrations of H+, SO2−4 and NH+4 in winter rain compared to snow. The wet deposition concentrations of H+, SO2−4, and NH+4 were highest in the summer, while only Na+ and Cl concentrations were highest in the winter, presumably due to winter road salting. The total deposition of acidic ions was highest in the summer and lowest in the winter, due both to lower concentrations and lower precipitation volumes in the winter. The dry deposition as collected by a bucket accounted for 1 % of total H+ deposition, 21 % of SO2−4 deposition, 27% of NO3 deposition, 50% of Cl deposition and 61 % of Ca2+ deposition.  相似文献   

8.
Measurements have been made of sulfur and nitrogen compounds in precipitation since 1980 and in air since 1981 in Ontario. This paper presents results of the atmospheric deposition measurement program to the end of 1985. As is to be expected from the distribution of emission sources, annual concentrations of SO42− andNO3 in precipitation, and of SO2,SO42− andNO3 in air are higher in southern Ontario than in northern Ontario. The corresponding distribution pattern for deposition is similar to that of concentration. A wet SO42− deposition rate of 20 kg ha1− y1−, a value considered critical for the acidification of sensitive water bodies, is exceeded in all of central and southern Ontario. On a province-wide basis, sulfur wet deposition is about four times higher than sulfur dry deposition. For nitrogen, wet and dry deposition are more comparable, though the former is still higher. The S- and N-species display different seasonal trends in concentration and deposition reflecting a dependence on meteorological factors, and on the associated chemical transformation rates. On the other hand, year to year variations are small.  相似文献   

9.
A comparison of data records in the 1990s, both before (1991–1994) and after (1995–1997) implementation of Phase I of the Clean Air Act Amendments (CAAA) of 1990 for the eastern US, shows a significant reduction in SO2 emissions for most states, except for Texas, North Carolina, Illinois, Florida, and Alabama. However, of the major NOx emitting states, only two eastern states (New York and Pennsylvania) show significant declines in NOx. A pattern of large declines in SO2 emissions (>20%) after CAAA implementation, and large declines in precipitation SO42− and H+, as well as air concentrations of SO2 and SO42− (components of dry deposition), exists for most regions of the eastern US. In most cases, the emission/concentration relations are close to 1 : 1 when the source region based on 15-h back trajectories is used for the New England region, and source regions based on 9-h back trajectories are used for the six other eastern US regions that were studied. The southern Appalachian Mountain region, an acid-sensitive area receiving high levels of acidic deposition, has not seen an appreciable improvement in precipitation acidity. This area has also shown the least improvement in wet and dry sulfur concentrations, of the areas examined. Precipitation base cations (Ca2+ and Mg2+) show a pattern of either increasing or level concentrations when comparing 1990–1994 to 1995–1998 data, for six of the seven regions examined. Ammonium concentrations have generally changed <10%, except for the Illinois and southern Appalachian Mtn. regions, which increased >15%.  相似文献   

10.
A flow-through chemical reactor model has been exercised to assess the importance of various oxidation reactions and cloud processes on wet removal and redistribution of atmospheric pollutants and to investigate the effect of in-cloud acidification on precipitation chemistry at the surface. Preliminary results indicate that in-cloud acidification accounts for more than 60% of the wet deposited acids derived from acidification of initial SO2, that 42–57% of water-soluble, non-reactive NH3 and HNO3 are removed by wet deposition. The pseudo-first-order conversion rate of SO2 to SO42− ranges from 3 to 25% h −1 depending on initial and boundary conditions.Sensitivity studies have been carried out to test the importance of time evolution of clouds on partitioning of pollutants in the atmosphere and to investigate the variability of precipitation chemistry due to changes in rate constants. The distributions of NH3 and HNO3 are found to be dependent largely on the cloud microphysical parameters, while the distributions of H2O2 and SO2 depend largely on initial conditions of both species. Individual physical and chemical mechanisms can determine the overall rate of sulfate wet deposition at different stages of cloud evolution.  相似文献   

11.
The model is used to simulate vertical profiles of H2S, SO2 and SO42− in the atmosphere up to about 8 km. Transformation and wet removal processes are treated as first order reactions with constant rate coefficients and the dry deposition is estimated using deposition velocity parameters. From a systematic study of the sensitivity of the model to variations in some of the key parameters and from a comparison with aircraft measurements of SO2 and SO42− over Scandinavia the following results are derived. An increase in the value of the deposition velocity in long range transport models beyond about 1cm s−1 has little effect on the estimated dry deposition. As the rate coefficient for the transformation of H2S to SO2 varies from 10 to 0.01 h−1 the scale height of H2S varies from 40 to 1400 m and that of SO2 (applicable to background air) from 1300 to 3400 m. An average value for the first 30 hours of the rate of transformation of man-made SO2 to SO42− is probably in the range 0.007 to 0.04 h−1 for European conditions. It is difficult to simulate the observed pattern of wet deposition of sulfur over northern Europe if the wet removal of SO2 is neglected.  相似文献   

12.
Numerical simulations have been carried out with a model consisting of clear-air chemistry, in- cloud chemical reactions, and dynamic processes of cloud development in order to examine the time history of cloudwater pH and sulfate production in a cumulus cloud and the relationship between pollutant precursors and corresponding acidic chemical species in wet deposition. Preliminary results indicate that the molar ratio SO42−/NC3 in cloud water increases as the ratio SO2/NO2 increases, that the relationship between the increase of precursor SO2/NO2 and the increase of SO42−/NO3 in cloud water is nonlinear, and that the degree of this nonlinearity becomes more significant for cases when the cloud condensation nuclei content in air is assumed to be invariant.  相似文献   

13.
Annual volume-weighted mean (VWM) concentrations in rainwater collected at La Castanya (LC, Montseny Mountains, NE Spain) were analysed from 1983 to 2000 to study the temporal trends in precipitation chemistry, and the causes behind the changes. A significant positive correlation was found between annual rainwater SO42− concentrations at LC and Spanish SO2 emissions (r=0.73, P=0.0008) both decreasing remarkably during this period. Rainwater alkalinity increased during the period, shifting from negative values at the beginning (VWM in the 5 initial years=−2.7 μeq l−1) to alkaline values in recent years (VWM in the 5 final years=18.0 μeq l−1). Stepwise regression analysis indicated that 88% of the variation of alkalinity could be accounted for by the variability of non-marine Ca2+ and non-marine SO42−, with a more prominent dependence on Ca2+.Rains of African provenance were highly enriched in alkalinity and Ca2+, but no significant increases in their occurrence were found for the study period. Because of the reported higher dust updraft in northern Africa during years of high North Atlantic Oscillation (NAO) index, we also explored the relationship between rainwater variables associated with an African provenance and NAO. Annual precipitation was inversely related to NAO (r=−0.61, P=0.007). The annual wet deposition of African dust-related elements showed no correlation with NAO, probably because wet deposition of these elements depends on two factors (precipitation and dust updraft) which have opposite behaviour with respect to NAO. We hypothesise that dry deposition of African dust during dry spells (not sampled in this study) might be higher during high NAO-index years.  相似文献   

14.
15.
A three-dimensional Eulerian hemispheric air pollution model, the Danish Eulerian Hemispheric Model (DEHM), is in development at the National Environmental Research Institute (NERI). The model has been used to study long-range transport of air pollution in the Northern Hemisphere. The present version of the model includes long-range transport of sulphur dioxide (SO2) and particulate sulphate (SC42−. The chemistry in the model is described by a simple linear oxidation of SO2 to SO42−, and the wet deposition of SO2 and SO4 is estimated based on the amount of precipitation, which is calculated from the contents of liquid cloud water (see Christensen, Air Pollution Modelling and its Applicatioons, Vol. X, pp. 119–127, Vol. XI, pp. 249–256, Plenum press, New York; 1995, Ph.D. thesis, National Environmental Research Institute, Denmark). The model has been used to study the air pollution in the Arctic. Results from yr simulation with an analysis of the results is presented: the model results are verified by comparisons, to measurements not only from the Arctic region but also from Europe and Canada. Some examples of episodes in the Arctic including analysis of the meteorological conditions during the episodes are presented. Finally, the model has been used to estimate the contribution from the different source regions on the northern hemisphere to the Arctic sulphur pollution.  相似文献   

16.
General procedures for adapting emission inventories to regional models and for studying the impact of differences in inventories on model predictions are outlined. To illustrate the methods, analysis of two inventories which are still being validated is presented. The inventories together satisfy current requirements for the NCAR regional acid deposition model (RADM). These include anthropogenic emissions of SO2, sulfate aerosol, NO, NO2, NH3 and volatile organic compounds (VOC) in 10 reactivity classes, from United States and Canadian point and area sources on 80-km grid resolutions, for weekend and weekday seasonally representative days on a diurnal basis during the 1980–1982 period. Application of checking procedures, designed by our group to screen for subtle anomalies not identified at previous stages of quality assurance employed by the inventory developers, resulted in adjustments primarily to VOC emissions. Comparisons of the modified inventories, which provide an indication of uncertainties in emissions due to variations in inventory development procedures, revealed differences in the eastern United States total daily emissions to be at most on the order of 5 % for SOx, and NOx, 20% for VOC and 85% for NH3. Studies of the impact of inventory differences on predictions of RADM were conducted for the 22–24 April 1981 period, which was monitored as part of the Oxidation and Scavenging Characteristics of April Rains program. Event total wet sulfate deposition differed by 10% or less while midday O3 concentrations differed by 1% or less for individual grids over the modeling domain.  相似文献   

17.
A year-long field study to characterize the ionic species in PM2.5 was carried out in Shanghai and Beijing, China, in 1999–2000. Weekly samples of PM2.5 were collected using a special low flow rate (0.4 l min−1) sampler. In Shanghai, SO42− NO3 and NH4+ were the dominant ionic species, which accounted for 46%, 18% and 17% of the total mass of ions, respectively. Local SO2 emissions were an important source of SO42− in PM2.5 because the SO42− concentration was correlated with the SO2 concentration (r=0.66). The relatively stable SO42−/SO2 mass ratio over a large range of temperatures suggests that gas-phase oxidation of SO2 played a minor role in the formation of SO42−. The sum of SO42− and NO3 was highly correlated with NH4+ (r=0.96), but insufficient ammonium was present to totally neutralize the aerosol. In Beijing, SO42−, NO3 and NH4+ were also the dominant ionic species, constituting 44%, 25% and 16% of the total mass of water-soluble ions, respectively. Local SO2 emissions were an important source of SO42− in the winter since SO42− was correlated with SO2 (r=0.83). The low-mass SO42−/SO2 ratio (0.27) during winter, which had low humidity, suggests that gas-phase oxidation of SO2 was a major route of sulfate formation. In the summer, however, much higher mass ratios of SO42−/SO2 (5.6) were observed and were ascribed to in-cloud sulfate formation. The annual average ratio of NO3/SO42− was 0.4 and 0.6 in Shanghai and in Beijing, respectively, suggesting that stationary emissions were still a dominant source in these two cities.  相似文献   

18.
In a land- and sea-breeze situation, effects of dry deposition on the dynamics of the concentrations of chemically reacting air pollutants are investigated using a transport/transformation/removal model with diurnally varying deposition velocities modeled in terms of the aerodynamic, surface, and residual resistances. The results show that the diurnally varying flows and eddy diffusivities, which are characteristic of the landand sea-breeze system, transfer the effects of dry deposition on the concentrations quickly to the upper layer over the land and sea surfaces. The dry deposition effect on one species can be transmitted to others through the network of chemical reactions, e.g. inclusion of dry deposition into the simulation resulted in the increase of hydrocarbon concentrations. It is also predicted that the dry deposition processes could remove a considerable part of emitted NOx, and SO2 from the local circulations, e.g. for 2 days about 40% of the emitted NOx was removed by the dry deposition of NO, NO2, HNO3 and PAN and in the case of SO2, 25 % by that of SO2 and SO42−.  相似文献   

19.
This paper illustrates a simple technique of performing space–time analysis of precipitation-weighted SO42− concentration data across the eastern US that were collected by the National atmospheric deposition program. Using a moving average filter and two-dimensional spatial data filtering algorithm on the time series of precipitation-weighted SO42− concentrations, we show that decreases of about 50% have occurred in SO42− concentrations in Minnesota, Wisconsin, and over the northeastern US between 1985 and 1998, generally consistent with SO2 emissions’ reductions over this period. The decreases in SO42− concentrations tended to be smaller in the midwest and south.  相似文献   

20.
This paper reports the results of over 2 years of measurements of several of the species comprising atmospheric SOx (=SO2+SO42−) and NOy (=NO+NO2 + PAN + HNO3+NO3+ organicnitrates + HONO + 2N2O5 …) at Whiteface Mountain, New York. Continuous real-time measurements of SO2 and total gaseous NOy provided data for about 50% and 65% of the period, respectively, and 122 filter pack samples were obtained for HNO3, SO2 and aerosol SO42−, NO3, H+ and NH4+. Concentrations of SO2 and NOy were greatest in winter, whereas concentrations of the reaction products SO42− and HNO3were greatest in summer. The seasonal variation in SO42− was considerably more pronounced than that of HNO3and the high concentrations of SO42− aerosol present in summer were also relatively more acidic than SO42− aerosol in other seasons. As a result, SO42− aerosol was the predominant acidic species present in summer, HNO3was predominant in other seasons. Aerosol NO3 concentrations were low in all seasons and appeared unrelated to simultaneous NOy and HNO3concentrations. These data are consistent with seasonal variations in photochemical oxidation rates and with existing data on seasonal variations in precipitation composition. The results of this study suggest that emission reductions targeted at the summer season might be a cost-effective way to reduce deposition of S species, but would not be similarly cost-effective in reducing deposition of N species. kwAcid deposition, seasonal variation, sulfate, nitrate, nitric acid, sulfur dioxide, oxides of nitrogen, hydrogen peroxide, ozone, air pollution, Adirondack Mountains  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号