首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The various design philosophies and methods used in the engineering design of precipitators for fly ash are reviewed and assessed in light of current stringent environmental standards. The basic precipitator size and electrical parameters are individually analyzed and related to particle and flue gas properties. Actual precipitator design practice is illustrated by data for a wide cross section of power plant installations.  相似文献   

2.
The relationships are considered between monthly and quarterly means of the fine particle sulfur (S) concentrations and wind flow direction, period of day and season of the year. The measurements used are those obtained at selected urban and at rural monitoring stations in the St Louis area during the Regional Air Pollution Study in 1975, 1976 and 1977. Higher mean fine particle S concentrations are observed with wind flows from the E compared to the W and from the NE and SE quadrants compared to the NW quadrant. Substantially higher fine particle S concentrations are obtained with wind flows from the E compared to the W even when conditions are selected so that the values of temperature, solar radiation intensity and wind speed are within the same restricted ranges. A consistent increase in the fine particle S concentrations occurs through the late morning and afternoon with decrease in the evening and especially in the early morning during spring and summer months with wind flows from the E.The contributions are estimated for local scale and regional scale processes to the observed fine particle S concentrations. Local scale processes include those involving atmospheric formation and primary emissions each contribute 0.6−1.0 and 0.6 μg m−3 of the fine particle S. Regional scale processes account for the greater part of the observed concentrations especially when the wind flows are from the SE or SW. Regional scale episodes involving passage of warm high pressure systems to the E of St Louis with accumulation of precursors made especially significant contributions to formation of fine particle S.The atmospheric gas phase and liquid phase chemical reactions contributing to the formation of fine particle S are discussed. Emphasis is placed on the effects of chemistry on the seasonal variations in concentrations of fine particle S.  相似文献   

3.
利用Fluent软件对静电除尘器烟道进口处流场进行了数值模拟,在此基础上提出一种新型的能有效均风的电晕线布置方法.结果表明,两相邻(垂直叠放)烟道进口处的电晕线平行放置时,在强电场力作用下产生的高速离子风会阻碍气流的均匀分布;两相邻烟道进口处的电晕线交叉放置时,可以起到明显的均风效果,更有利于除尘器内气流的均匀分布和提高除尘效率.该方法为静电除尘器的改造和设计提供了一种新的思路.  相似文献   

4.
Field observations indicating that uniform gas flow at the precipitator outlet may not result in best performance led to a study of how reentrainment and changes in gas distribution within a precipitator affect performance. A computer model developed in the study predicts that an improvement over uniform flow performance is possible by using controlled nonuniform gas distributions at both the inlet and the outlet faces of the precipitator. The model was used to study how changes in precipitator side view geometry affect performance and offers explanations for the reduction in precipitation constants experienced with larger installations.  相似文献   

5.
The particle and gas properties that profoundly affect design and performance of fly ash precipitators are discussed and evaluated in this section. Relation of the coal burned to these properties and to the precipitator gas cleaning problem is broadly examined. The need for a high order of technology consistently applied to cope successfully with the wide and often uncertain variations in coal and ash properties encountered in precipitation practices is emphasized.  相似文献   

6.
为了进一步提高电除尘器的收尘效率,尤其是对高比电阻粉尘的收尘效率,依据非稳态静电收集理论,对影响电除尘器粉尘收集性能各项因素的作用程度及机理进行了进一步研究。实验研究了粉尘收尘效率与不同比电阻粉尘的最优极间距、最优工作电压、粉尘层厚度和比电阻之间的相互关系。研究结果表明,随着极间距的增加,对应比收尘极面积,对于不同比电阻粉尘的收尘效率的增加幅度是不同的,其中高比电阻粉尘的收尘效率增加的趋势更加显著;粉尘比电阻越高,所对应的最优极间距越大,宽间距电除尘器对捕集高比电阻粉尘具有一定优越性;在最优极间距条件下,粉尘比电阻越高,其所对应的最优工作电压越小;相对于正常比电阻粉尘,随极板沉积粉尘层厚度的增加,高比电阻粉尘的最佳收尘效率所对应的最优工作电压升高幅度较大,而且最优工作电压所对应的收尘效率下降显著。随粉尘比电阻的增大,电除尘器收尘效率逐渐降低,特别是当粉尘比电阻大于1011Ω.cm后,粉尘收尘效率显著下降。研究结果与非稳态静电收尘理论提出的观点相吻合,有助于透彻理解电场结构和运行参数与粉尘收集性能的关系,特别是对于今后研发提高高比电阻粉尘收集性能的针对性技术措施具有指导作用。  相似文献   

7.
A self-flushing wet electrostatic precipitator was developed to investigate the removal performance for fine particles. Flexible material (polypropylene, 840A) and carbon steel in the form of a spiked band were adopted as the collection plate and discharge electrode, respectively. The particle concentration, morphology, and trace-element content were measured by electric low-pressure impactor, scanning electron microscope, and energy-dispersive x-ray spectroscopy, respectively, before and after the electrostatic precipitator. With increasing gas velocity, the collection efficiency of fine particles (up to 0.8 μm in diameter) increased, while it decreased for particles with diameters larger than 0.8 μm. Increasing the dust inlet concentration increased the collection efficiency up to a point, from which it then declined gradually with further increases in the inlet concentration. The particulate matter after the wet electrostatic precipitator showed different degrees of agglomeration. The collection efficiency of trace elements within PM10 was less than that of the PM10 itself. Notably, the water consumption in the current setup was significantly lower than for other treatment processes of comparable collection efficiencies.

Implications: Wet electrostatic precipitators, as fine filtration equipment, were generally applicable to coal-fired plants to reduce PM2.5 emissions in China. However, high energy consumption and unstable operation, such as water usage and spray washing directly in the electric field, seriously restricted the further development. The utilization of self-flushing wet electrostatic precipitator can solve these problems to some extent.  相似文献   


8.
An electrostatic precipitator preceded by a wet scrubber was tested at the Reftinskaya Power Station. The unit collects a high resistivity fly ash from the combustion of low sulfur Ekibastuz coal. The operating parameters of the precipitator were measured as well as the mass emissions and the in-situ electrical resistivity of the fly ash. Density, particle size distribution, electrical resistivity, and chemical composition were determined for collected samples of the fly ash. The fly ash was also characterized by x-ray diffraction and scanning electron microscopy. When a centrifugal wet wall scrubber was installed ahead of the electrostatic precipitator, the temperature of the flue gas entering the precipitator was decreased and the moisture content increased. The electrical resistivity of the fly ash was attenuated a decade, but not enough to overcome the adverse effects of back corona in the precipitator. Lowering the flue gas temperature to about 85°C by the addition of a venturi scrubber ahead of the centrifugal scrubber reduced the electrical resistivity of the fly ash another decade and allowed the operation of the precipitator without back corona.  相似文献   

9.
A new application of the quasi-simultaneous gas/particle phase sampling and analysis principle first proposed by Simon and Dasgupta (Anal. Chem. 34 (1995) 71) is described. For the first time, a gradient chromatograph is used in connection with such a sampling system to allow the simultaneous determination of major organic (formic, acetic, propionic, oxalic, malonic and succinic) and inorganic (SO2, HNO2, HNO3, HCl and H2F2) acidic gases and related particles. Another addition to the previous systems is the analysis of cations other than ammonium from the particulate phase. The time resolution of the instrument still remains high, 1 h, during which gaseous water-soluble acidic compounds, ammonia, as well as related anionic particles and inorganic major cations are analysed. Sampling is based on diffusion in a wetted parallel plate denuder for gases and on growth in supersaturated water vapour for particles. The determination limits range from 2 ppt (acetate) to 0.4 ppb (ammonia) in the gas phase and 0.01 μg m−3 (citric acid) to 0.79 μg m−3 (calcium) for particulate matter. Collection efficiencies for gas and aerosol sampling were quantified and the supersaturation in the aerosol sampling apparatus investigated. The system has been used for field measurements at a background station; selected results of these measurements are presented.  相似文献   

10.
This paper presents the results of work conducted by Research-Cottrell under EPA contract 68-02-2104. The feasibility of electrostatic precipitation at temperatures and pressures varying from ambient condition to 1366°K and 3550 kPa, respectively, has been demonstrated in a laboratory wire-pipe electrode system. Stable corona discharges are obtained at all temperatures subject to appropriate choices of electrode dimension, polarity, and pressure. Current-voltage characteristics are reported for dry air, a simulated combustion gas, and a substitute fuel gas. The effects of temperature, pressure, electrode geometry and polarity on sparkover voltage, corona-starting voltage, and current are evaluated. A precipitator performance model is included to incorporate this data into a high temperature, high pressure precipitator design. This model has been evaluated for an electrostatic (HTHP) precipitator following a pressurized fluidized bed combustor at 1089 K and 920 kPa. It is recommended that prototype HTHP electrostatic precipitators be applied to pilot coal gasifiers and fluidized bed combustors to obtain detailed design data and to verify the accuracy of the performance model under actual operating conditions.  相似文献   

11.
An experimental high-temperature, high-pressure electrostatic precipitator module has been designed, fabricated and then evaluated in a gaseous environment having the characteristics anticipated for the combustion chamber of a system for generating electric power from the incineration of municipal solid wastes.

Stable positive and negative corona discharges were established in combustion gases from the burning of methanol and air (temperature and pressure approximately 1700°F and 100 psig, respectively) without any apparent deleterious effects due to thermal ionization and/or emission. At gas conditions of about 1700°F and 50 psig, positive polarity energization of the discharge electrode appeared superior to that of negative polarity in terms of voltage level that could be applied and electrical stability.

However, precipitator performance on removal of alumina dust injected under controlled conditions with the methanol fuel, showed negative polarity to be superior to positive polarity at the selected conditions of 1650°F and 100 psig which closely correspond to those required for optimum operation of the gas turbine presently under consideration. Removal efficiencies ranging from 25% for positive polarity to as high as 87% with negative polarity were measured.

In order to check whether materials having a low ionization potential would thermally ionize to such an extent that the voltage-corona current characteristics of the precipitator would be impaired, rendering it ineffective, potassium chloride salt in solution was injected with the fuel. Results indicated that amounts of approximately one part by weight of potassium ion in 2500 to 3000 parts by weight of gas at 1700°F tripled the current measured for a given voltage when compared to non-injection.

Although a limited test program was conducted, sufficient data were obtained to allow preliminary design and sizing of larger scale units.  相似文献   

12.
Compliance with particulate standards for utility boilers burning low sulfur western coal has resulted in the installation and proposed installation of several fabric filter collectors where cold or hot electrostatic precipitators would have traditionally been applied. Recently, SO3 conditioning has been used to improve cold precipitator performance resulting in considerable reduction in specific collection area (SCA). All this suggests that trade-offs exist indicating ranges of SCA, A/C ratio, and power plant size (Mw) where fabric filters become competitive with electrostatic precipitators. Conceptual cost models are presented which indicate total capital investment and annual costs for the control devices. Precipitator costs are correlated with collecting area, gas flow rate, and power input and are presented as functions of SCA and Mw. Fabric filter costs are keyed to gross filter area, pressure drop, and gas flow rate. Fabric filters become competitive when a cold precipitator requires SCAs in excess of 600 to 800 and competitive when a hot precipitator requires equivalent cold precipitator SCAs in excess of 600 to 1000 depending on A/C ratio, Mw, and hot precipitator SCA credit allowance. The S03 conditioned precipitator scenario is shown to be economically competitive with fabric filters.  相似文献   

13.
The objective of this paper is to describe the Tennessee Valley Authority's efforts and plans in designing an operating and maintenance program that will ensure maximum performance of the electrostatic precipitators at our power generating stations. Detailed operating and maintenance manuals are being prepared for each plant for the use of plant personnel. These manuals include instructions on operation, maintenance, and testing of the precipitators. Instructions on internal and external equipment inspections to be performed during unit operation, emergency and scheduled outages, and problem diagnostic procedures are included to help the plant personnel solve problem areas. Performance curves are included in the manuals which show the effect of gas volume flow, gas temperature, gas resistivity, coal changes, and loss of transformer-rectifier sets on the precipitator performance. In addition, opacity monitors that record continuous opacity readings are being installed at all our plants to assist the plant in monitoring precipitator performance. Full-time operating and maintenance crews are being organized at the plants to monitor and maintain the precipitator and ash-removal systems. Also, a staff of technical personnel is being organized at the central office to provide technical advice and assistance in design, operation, and maintenance problems and liaison and coordination for all the plants concerning the precipitators. Periodic precipitator field inspections, performance and operating parameter optimization testing, and review of the equipment operating logs are made by the central office technical personnel. Recommendations and technical assistance are then furnished to the plant with regard to the precipitator overall performance and operating characteristics.  相似文献   

14.
This paper describes a versatile experimental facility for evaluating the collection of high resistivity fly ash by advanced electrostatic precipitator designs at near full scale. The unit will operate on a slipstream of up to 424 m3/min (15,000 acfm) from a boiler firing pulverized low sulfur Western coal with an ash resistivity of 1013 ohm-cm at 149°C (300°F). The test unit is designed so that if can be configured as either a single-stage or a two-stage unit and allows for easy installation of different charger and collector components for evaluation. A dampered heat exchanger provides control over the gas temperature from 93°C (200°F) to 370°C (700°F) so that tests can be run at either hot-side or cold-side conditions. Support equipment includes a gas circulating fan, venturi meter for measurement and control of the flow, an instrumentation trailer housing a computerized system for data collection and control of the ESP, and a gas analysis trailer and particulate sampling station for a comprehensive evaluation of the system.  相似文献   

15.
The theory for penetration of ‘sticky’ gaseous molecules through cylindrical tubes in laminar flow is presented and implications of the theory for measurements of mass accommodation coefficients are discussed. For the case where the inner tube walls are coated with a liquid, a criterion is developed which can be used to determine whether re-evaporation is likely to contribute significantly to measured penetration values. This criterion can be useful in designing experiments. It is concluded that laminar flow penetration measurements can be useful for measuring very small mass accommodation coefficients (<10−4). The theory can also be used to design diffusion denuders when accommodation coefficients are known.  相似文献   

16.
17.
18.
As air infiltrates through unintentional openings in building envelopes, pollutants may interact with adjacent surfaces. Such interactions can alter human exposure to air pollutants of outdoor origin. We present modeling explorations of the proportion of particles and reactive gases (e.g., ozone) that penetrate building envelopes as air enters through cracks and wall cavities. Calculations were performed for idealized rectangular cracks, assuming regular geometry, smooth inner crack surface and steady airflow. Particles of 0.1–1.0 μm diameter are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or larger, assuming a pressure difference of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles are significantly removed by means of gravitational settling and Brownian diffusion, respectively. In addition to crack geometry, ozone penetration depends on its reactivity with crack surfaces, as parameterized by the reaction probability. For reaction probabilities less than ∼10−5, penetration is complete for cracks heights greater than ∼1 mm. However, penetration through mm scale cracks is small if the reaction probability is ∼10−4 or greater. For wall cavities, fiberglass insulation is an efficient particle filter, but particles would penetrate efficiently through uninsulated wall cavities or through insulated cavities with significant airflow bypass. The ozone reaction probability on fiberglass fibers was measured to be 10−7 for fibers previously exposed to high ozone levels and 6×10−6 for unexposed fibers. Over this range, ozone penetration through fiberglass insulation would vary from >90% to ∼10–40%. Thus, under many conditions penetration is high; however, there are realistic circumstances in which building envelopes can provide substantial pollutant removal. Not enough is yet known about the detailed nature of pollutant penetration leakage paths to reliably predict infiltration into real buildings.  相似文献   

19.
A mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cm−3, with additional peak particle number concentrations of up to 400 000 cm−3. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters <50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.  相似文献   

20.
Isoprene emission capacity measurements are presented from 18 North American oak (Quercus) species and species from six other genera previously found to emit significant quantities of isoprene. Sampling was conducted at physiographically diverse locations in North Carolina, Central California, and Northern Oregon. Emissions from several sun leaves of each species were measured at or near standard conditions (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m−2 s−1) using environmentally controlled cuvette systems and gas chromatography with reduction gas detectors. Species mean emission capacity ranged from 39 to 158 μg C g−1 h−1 (mean of 86), or 22 to 79 nmol m−2 s−1 (mean of 44). These rates are 2–28 times higher than those previously reported from the same species, which were summarized in a recent study where isoprene emission rates were assigned based on published data and taxonomy. These discrepancies were attributed to differences in leaf environment during development, measurement technique (branch or plant enclosure versus leaf enclosure), and lack of environmental measurements associated with some of the earlier branch enclosure measurements. Mass-based emission capacities for 15 of 18 oak species, sweetgum (Liquidambar styraciflua), and poplars (Populus trichocarpa and P. deltoides) were within ranges used in current biogenic volatile organic compound (BVOC) emission models, while measured rates for the remaining three oak species, Nyssa sylvatica, Platanus occidentalis, Robinia pseudoacacia, Salix nigra, and Populus hybrids (Populus trichocarpa × P. deltoides) were considerably higher. In addition, mean specific leaf mass of the oak species was 30% higher than assumed in current emission models. Emission rates reported here and in other recent studies support recent conclusions that isoprene emission capacities for sun leaves of high emitting species may be better represented by a value of 100±50 μg C g−1 h−1 during hot summer conditions. We also find that intermediate isoprene emission rates previously suggested for some tree species may not represent their true emission capacities, and that broadleaf plant species may have either low (<1.0 μg C g−1 h−1) or very high (∼100 μg C g−1 h−1) genetic capacity to emit isoprene when mature foliage is exposed to a high ambient temperature and light environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号