首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to provide a comprehensive overview of neonicotinoid pesticide residues in honey samples for a single country and compare the results with the import data for neonicotinoid pesticides. The levels of four neonicotinoid pesticides, namely thiamethoxam, imidacloprid, acetamiprid, and thiacloprid, were determined in 294 honey samples harvested from 2005 to 2013 from more than 200 locations in Estonia. For the analyzed honey samples, 27% contained thiacloprid, and its levels in all cases were below the maximum residue level set by the European Union. The other neonicotinoids were not detected. The proportion of thiacloprid-positive samples for different years correlates well with the data on thiacloprid imports into Estonia, indicating that honey contamination with neonicotinoids can be estimated based on the import data.  相似文献   

2.
A sensitive and reliable method for the simultaneous determination of hydroxycoumarin-type (brodifacoum, bromadiolone, coumatetralyl, and warfarin) and indandione-type (chlorophacinone, diphacinone, and pindone) rodenticides in agricultural products by gel permeation chromatography (GPC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed. The procedure involved extraction of the rodenticides from samples with acetone, followed by liquid–liquid partitioning with hexane/ethyl acetate (1:1, v/v) and 10% sodium chloride aqueous solution, then cleanup using GPC, and finally, analysis using LC–MS/MS. High recoveries from the GPC column were obtained for all rodenticides tested using a mobile phase of acetone/cyclohexane/triethylamine (400:1600:1, v/v/v). An ODS column, which contains low levels of metal impurities, gave satisfactory peak shapes for both hydroxycoumarin- and indandione-type rodenticides in the LC–MS/MS separation. The average recoveries of rodenticides from eight agricultural foods (apple, eggplant, cabbage, orange, potato, tomato, brown rice, and soybean) fortified at 0.0005–0.001 mg/kg ranged from 76 to 116%, except for bromadiolone in orange (53%) and diphacinone in soybean (54%), and the relative standard deviations ranged from 1 to 16%. The proposed method effectively removed interfering components, such as pigments and lipids, and showed high selectivity. In addition, the matrix effects were negligible for most of the rodenticide/food combinations. The results suggest that the proposed method is reliable and suitable for determining hydroxycoumarin- and indandione-type rodenticides in agricultural products.  相似文献   

3.
A sensitive and efficient method has been developed for the simultaneous determination of 73 multi-class acidic pesticides, such as phenoxy acid and sulfonylurea herbicides, in vegetables and fruits. The sample preparation procedure was carefully optimized for the efficient removal of co-extracted matrix components. The method involves extraction of acidic pesticides with acetonitrile containing hydrochloric acid, removal of water from crude extract by salting out, and sequential cleanup by octadecylsilyl silica gel and silica gel columns. For samples containing high amounts of pigments, such as spinach, additional cleanup using a graphitized carbon column was performed prior to liquid chromatography–mass spectrometry (LC–MS/MS) analysis. Recovery tests were performed for five times for each sample of cabbage, spinach, potato, eggplant, orange, and apple fortified at 0.01 mg kg?1. Out of the 73 tested pesticides, 70 for cabbage, 67 for spinach, 69 for potato, 67 for eggplant, 64 for orange, and 70 for apple were within the range of 70–120%, with relative standard deviations below 25%. Nitenpyram and pyrasulfotole showed low recoveries for all the samples tested, probably due to low recoveries from silica gel column. The developed method effectively removed co-extracted matrix components and was highly selective, with no interfering peaks found in the chromatograms of blank samples. The overall results indicate that the developed method is suitable for the quantitative analysis of acidic pesticide residues in vegetables and fruits.  相似文献   

4.

Background, aim, and scope

According to the high incidence of cancer worldwide, the amount of cytostatic drugs administered to patients has increased. These compounds are excreted to wastewaters, and therefore become potential water contaminants. At this stage, very little is known on the presence and elimination of cytostatic compounds in wastewater treatment plants (WWTP). The aim of this study was to develop a liquid chromatography?Chigh-resolution mass spectrometry (LC?COrbitrap?CMS) method for the determination of cyclophosphamide and epirubicin in wastewaters. These compounds represent two outmost used cytostatic agents.

Materials and methods

Extraction and analytical conditions were optimized for cyclophosphamide and epirubicin in wastewater. Both solid-phase extraction using Oasis 200?mg hydrophilic?Clipophilic balanced (HLB) cartridges and direct injection analysis were evaluated. Mass spectral characterization and fragmentation conditions were optimized at 50,000 resolving power (full width at half maximum, m/z 200) to obtain maximum sensitivity and identification performance. Quality parameters (recoveries, limits of detection, and repetitivity) of the methods developed were determined, and best performance was obtained with direct water analysis of the centrifuged wastewater. Finally, this method was applied to determine the presence of cyclophosphamide and epirubicin in wastewaters from a hospital effluent, an urban effluent, and influents and effluents from three WWTP.

Results and discussion

Cyclophosphamide and epirubicin were recovered after 50?mL preconcentration on solid-phase extraction 200?mg Oasis HLB cartridges (87% and 37%, respectively), and no breakthrough was observed by extracting 500?mL of water. Limits of detection were of 0.35 and 2.77?ng/L for cyclophosphamide and epirubicin, respectively. On the other hand, direct injection of water spiked at 1???g/L provided recoveries of 107% for cyclophosphamide and 44% for epirubicin and limits of detection from 3.1 to 85?ng?L?1, respectively. The analysis of wastewaters using direct injection analysis revealed the presence of cyclophosphamide and epirubicin in WWTP influents and hospital and urban effluents at levels ranging from 5.73 to 24.8???g?L?1.

Conclusions

The results obtained in this study demonstrate the capability of LC?COrbitrap?CMS for accurate trace analysis of these very polar contaminants. This method permitted to identify cyclophosphamide and epirubicin in wastewaters and influents of WWTP, but no traces were detected in WWTP effluents. The methodology herein developed is sensitive and robust and applicable for screening of a large number of samples since no preconcentration is needed.  相似文献   

5.
6.
An on-line supercritical fluid extraction–liquid chromatography–gas chromatography–mass spectrometry (SFE–LC–GC–MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25–0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m−3 (24 h sampling). The linearity was excellent from 5 to 300 ng (R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE–LC–GC–MS method were comparable with those for Soxhlet and shake-flask extractions with GC–MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m−3, while total PAH concentrations varied from 0.81 to 5.68 ng m−3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10−3% in July to 15.0×10−3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.  相似文献   

7.
In this study, a rapid and accurate ultra-fast liquid chromatography–tandem quadrupole mass spectrometry (UFLC–MS/MS) method coupled with the isotope internal standard dilution technique was established and validated to determine trace dicyandiamide (DCD) in mussels. The sample was extracted by acetonitrile, and chromatographic separations were performed on an Acquity UPLC BEH Amide column by using water–acetonitrile (9:91, v/v) as the mobile phase within 3 min. DCD was determined by using DCD-15N4 as an internal standard. The results showed that the recoveries were between 96.2 and 103 % with relative standard deviations (RSDs) in the range of 0.6–6.0 %. The limit of quantification (LOQ) was 0.05 μg/kg. This method can be applied to the routine analysis for the rapid and sensitive determination of trace DCD in mussels. Overall, the data reiterate the importance of investigating the presence of DCD in marine biological samples, which can act as food quality controls for human health.  相似文献   

8.
《Chemosphere》2013,90(11):1376-1383
Risk assessment of xenobiotics requires a comprehensive understanding of their transformation in the environment. As most of the transformation processes usually involve a redox reaction or a hydrolysis as the first steps of the transformation, we applied an approach that uses an electrochemical cell to investigate model “redox” reactions in aqueous solutions for environmental processes. We investigated the degradation of a variety of xenobiotics from polar to nonpolar and analyzed their degradation products by on-line coupling of electrochemistry with mass spectrometry (EC–MS). Furthermore, we evaluated possible binding reactions with regard to the generation of non-extractable residues with some model substances (catechol, phthalic acid, γ-l-Glutamyl-l-cysteinyl-glycine (GSH) and l-histidine) deduced from a natural organic matter (NOM) structure model and identified possible binding-sites.Whereas typically investigations in soil/water-systems have been applied, we used to our knowledge for the first time a bottom-up approach, starting from the chemicals of interest and different model substances for natural organic matter to evaluate chemical binding mechanisms (or processes) in the EC–MS under redox conditions. Under oxidative conditions, bindings of the xenobiotics with catechol, GSH and histidine were found, but no reactions with the model compound phthalic acid were observed. In general, no chemical binding has yet been found under reductive conditions. In some cases (i.e. benzo[a]anthracene) the oxidation product only underwent a binding reaction, whereas the xenobiotic itself did not undergo any reactions.EC–MS is a promising fast and simple screening method to investigate the environmental behavior of xenobiotics and to evaluate the potential risks of newly synthesized substances.  相似文献   

9.
A gas chromatography–mass spectrometry method has been proposed for the determination of low-level mutagenic and carcinogenic nitrosamines in particulate matter. The method includes the collection of particulate matters (PM2.5 and PM10) using a dichotomous Partisol 2025 sampler and extraction of the compounds from aqueous solution with dichloromethane/2-propanol after sonication with a slightly basic water solution prior to their GC-MS analysis in electron impact mode. The obtained recoveries of nitrosamines ranged from 92.4 to 99.2 %, and the precision of this method, as indicated by the relative standard deviations, was within the range of 0.95–2.46?%. The detection limits obtained from calculations using the GC-MS results based on S/N?=?3 were found within the range from 4 to 22 pg/m3. The predominant nitrosamines determined in particulate matter were N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodibutylamine and N-nitrosomorpholine. Furthermore, N-mono- and dinitrosopiperazine and N-nitrosoethylbutylamine were also determined. N-dinitrosopiperazine was detected in PM2.5 samples at the highest concentrations of up to 22.85 ng/m3 and in PM2.5–10 samples at concentrations up to 7.60 ng/m3 in winter, whereas it was found in PM2.5 samples up to 5.15 ng/m3 and in PM2.5–10 samples up to 3.12 ng/m3 in summer. The total concentrations of nitrosamines were up to 161.4 ng/m3 in fine and 53.90 ng/m3 in coarse fractions in winter, whereas in summer were up to 35.24 and 12.60 ng/m3, respectively. The concentration levels of nitrosamines fluctuated significantly within a year, with higher means and peak concentrations in the winter compared to that in the summertime. The seasonal variations of particle-associated nitrosamine concentrations were investigated together with their relationships with meteorological parameters using Pearson’s correlation analysis in the winter and summer periods. Analysis of variance was used to determine which concentrations of nitrosamines were statistically different from one another and, together with meteorological parameters and discriminant analysis, was used to classify the particle samples by particle size according to seasons. The classification results of the particle samples in different seasons were very satisfactory, allowing 99.5 % of cases to be correctly grouped.  相似文献   

10.
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation–emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.  相似文献   

11.
A study was conducted on the Brigham Young University campus during January and February 2015 to identify winter-time sources of fine particulate material in Utah Valley, Utah. Fine particulate mass and components and related gas-phase species were all measured on an hourly averaged basis. Light scattering was also measured during the study. Included in the sampling was the first-time source apportionment application of a new monitoring instrument for the measurement of fine particulate organic marker compounds on an hourly averaged basis. Organic marker compounds measured included levoglucosan, dehydroabietic acid, stearic acid, pyrene, and anthracene. A total of 248 hourly averaged data sets were available for a positive matrix factorization (PMF) analysis of sources of both primary and secondary fine particulate material. A total of nine factors were identified. The presence of wood smoke emissions was associated with levoglucosan, dehydroabietic acid, and pyrene markers. Fine particulate secondary nitrate, secondary organic material, and wood smoke accounted for 90% of the fine particulate material. Fine particle light scattering was dominated by sources associated with wood smoke and secondary ammonium nitrate with associated modeled fine particulate water.

Implications: The identification of sources and secondary formation pathways leading to observed levels of PM2.5 (particulate matter with an aerodynmaic diameter <2.5 μm) is important in making regulatory decisions on pollution control. The use of organic marker compounds in this assessment has proven useful; however, data obtained on a daily, or longer, sampling schedule limit the value of the information because diurnal changes associated with emissions and secondary aerosol formation cannot be identified. A new instrument, the gas chromtography–mass spectrometry (GC-MS) organic aerosol monitor, allows for the determination on these compounds on an hourly averaged basis. The demonstrated potential value of hourly averaged data in a source apportionment analysis indicates that significant improvement in the data used for making regulatory decisions is possible.  相似文献   


12.
13.
《Chemosphere》2013,90(11):1426-1436
Volatile organic compounds (VOCs) from several different municipal solid wastes’ treatment plants in Mallorca (Spain) have been analysed by thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). Ambient (immission) air was collected during February and March 2011 by active sampling onto sorbents Tenax™ TA and Carboxen™ 1000. The study presents the chemical characterisation of 93 volatile organic compounds (VOCs) from an overall set of 84 immission air samples. 70 VOCs were positively identified.The linear fit for all 93 external standard calibration, from 10 mg L−1 to 150 mg L−1 (n = 4), was within the range 0.974 < r2 < 0.998. Limits of detection of the method (LOD) for all the standards were within the range 1.1–4,213 pg, as the absolute standard amount spiked into sorbent tubes in 1 μL standard mixture (dissolved in methanol).Overall results stated systematic correlation between waste’s nature and VOCs’ air composition. Organic wastes show main contribution of terpenes, waste water sludge residues’ of reduced sulphured compounds (RSCs) and municipal solid wastes show contribution of a wide sort of VOCs. The use of a chemometric approach for variable’s reduction to 12 principal components enables evaluation of similarities and dissimilarities between facilities. PCA clearly related samples to its corresponding facility on the basis of their VOCs composition and the ambient temperature.  相似文献   

14.
Emerging organic contaminants in wastewater are usually analyzed by targeted approaches, and especially estrogens have been the focus of environmental research due to their high hormonal activity. The selection of specific target compounds means, however, that most of the sample components, including transformation products and potential new contaminants, are neglected. In this study, the fate of steroidal compounds in wastewater treatment processes was evaluated by a nontargeted approach based on comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. The potential of the nontargeted approach to generate comprehensive information about sample constituents was demonstrated with use of statistical tools. Transformation pathways of the tentatively identified compounds with steroidal four-ring structure were proposed. The purification efficiency of the wastewater treatment plants was studied, and the distribution of the compounds of interest in the suspended solids, effluent water, and sludge was measured. The results showed that, owing to strong adsorption of hydrophobic compounds onto the solid matter, the steroids were mostly bound to the suspended solids of the effluent water and the sewage sludge at the end of the treatment process. The most abundant steroid class was androstanes in the aqueous phase and cholestanes in the solid phase. 17β-estradiol was the most abundant estrogen in the aqueous phase, but it was only detected in the influent samples indicating efficient removal during the treatment process. In the sludge samples, however, high concentrations of an oxidation product of 17β-estradiol, estrone, were measured.  相似文献   

15.
The purpose of this study was to investigate common pesticides in stored wheat at Kermanshah province's silos in Iran. A simple, inexpensive, reliable and environmentally friendly method based on dispersive liquid–liquid microextraction with solidification of floating organic drop was developed. The analytical characteristics of the method were determined. Also, various parameters such as the materials of the silos, types of ownerships of the silos, geographic orientation of silo locations and climatic conditions of silo locations on pesticide residues in studied wheat samples were investigated. Among all the studied parameters, the climatic conditions of silo locations showed the highest influence on pesticide residues in wheat samples. Generally, 61.2% of the samples had pesticide levels below the method detection limits and 38.8% of the total samples had at least one of the understudied pesticides. Also, 13.9% of the samples had deltamethrin residues, 16.7% of the samples had permethrin, 22.2% of the samples had malathion, 11.1% of the samples had both permethrin and malathion and 2.8% of the samples had both deltamethrin and malathion. The results revealed that the residues of deltamethrin and malathion were lower than the standard level announced by European Union regulation and only three samples contained permethrin higher than Europe standard level.  相似文献   

16.
Measurements of heavy metal content (Pb, Cd, Zn) were made in the period 1969–93 in a forested ecosystem near Möhlin (north-western part of Switzerland). Some distinct changes were found in the soil, especially in the subsoil (30–35 cm). The main and most likely driving force of the induced changes in the subsoil can be traced back to the observed decomposition of organic matter which strongly influenced the behaviour of major and minor chemical constituents of the soil. These changes are presumably mostly due to incidents that occurred in the past caused by the nearby aluminium industry. Generally, the observed changes in soil chemistry increase with decreasing distance to the aluminium plant in the time span 1969–93. The influence, if any, of the vegetation type and the forest management on the changes in the subsoil could not be figured out. Changes in the Pb content primarily correlate with soil organic matter (with a significant decrease in the subsoil). Good correlations are also found with Fe and partially with Al and Mn. Cd correlates well with pH, (earth)alkali ions, and generally to a lower degree with Mn, Fe and Al, but almost no correlation was found with the organic matter of the soil. Zn holds an intermediate position: significant correlations with organic C, (earth)alkali ions, Fe, Al and Mn were found but pH correlated only very weakly. The main transportation mechanism of Pb in the subsoil is believed to be primarily in colloidal form. Colloid release mechanisms are hypothesised to be due to the humus disintegration and the consequent reaction chain. In contrast to Pb, the elements Cd and Zn have, presumably, been translocated to a great extent as aqueous species.  相似文献   

17.
Environmental Science and Pollution Research - Dissolved organic matter (DOM) and microbes are key in the planetary carbon cycle, and research on them can lead to a better understanding of the...  相似文献   

18.

Background, aim, and scope  

Bombing and destruction of the industrial and military targets accompanied by complete or incomplete combustion during the war conflict and NATO operation in former Yugoslavia caused the emission of persistent organic pollutants into the atmosphere, water, and soil. A total of 129 ambient air samples from 24 background, urban, and industrial sites, including hot spots, were collected to assess a gas–particle partitioning behavior of various persistent organic pollutants.  相似文献   

19.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   

20.
《Chemosphere》2011,82(11):1549-1559
Harmful effects of potentially toxic elements (PTE’s) in soils relate to their geochemically reactive fraction. To assess the degree of the reactivity, specific extractions or models are needed. Here we applied a 0.43 M HNO3 chemical extraction to assess reactive pools of a broad range of PTE’s in 136 contaminated and non-contaminated soils. Furthermore we derived Freundlich-type models based on commonly available soil properties (pH, organic carbon and clay) as well as extended models that used other properties such as amorphous Al and Fe oxides and evaluated their possible use in risk assessment.The approach allowed to predict the reactivity of As, Hg, Co, U, Ba, Se, Sb, Mo, Li, Be (r2: 0.55–0.90) elements not previously included in such studies, as well as that of Cd, Zn, Cu, Pb, Ni and Cr (r2: 0.73–0.90). The inclusion of pH, organic carbon and clay improved the performance of all models except for Be and Mo, although the role of clay is not completely clear and requires further investigation. The ability of amorphous metal oxides to affect the reactivity of As, Hg, Cu, Ni, Cr, Sb, Mo and Li was expressed by the models in agreement with known geochemical processes leading to the retention of PTE’s by the solid matrix. Hence, such approach can be a useful tool to account for regional differences in soil properties during the identification of risk areas and constitute a significantly more powerful tool than the analysis of total pools of PTE’s in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号