共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Monitoring the results of Canada/U.S.A acid rain control programs: some lake responses 总被引:1,自引:0,他引:1
Jeffries DS Brydges TG Dillon PJ Keller W 《Environmental monitoring and assessment》2003,88(1-3):3-19
Aquatic acidification by deposition of airborne pollutants emerged as an environmental issue in southeastern Canada during the 1970s. Drawing information from the extensive research and monitoring programs, a sequence of issue assessments demonstrated the necessity of reducing the anthropogenic emissions of acidifying pollutants, particularly sulphur dioxide (SO2). The 1991 Canada-U.S. Air Quality Agreement (AQA) was negotiated to reduce North American SO2 emissions by 40% relative to 1980 levels by 2010, and at present, both countries have reduced emissions beyond their AQA commitment. In response to reduced SO2 emissions, atmospheric deposition of sulphate (SO4
2–) and SO4
2– concentrations in many lakes have declined, particularly in south-central Ontario and southern Québec. Sulphate deposition still exceeds aquatic critical loads throughout southeastern Canada however. Increasing pH or alkalinity (commonly deemed recovery) has been observed in only some lakes. Several biogeochemical factors have intervened to modify the lake chemistry response to reduced SO4
2– input, notably release of stored SO4
2– from wetlands following periods of drought and reduction in the export of base cations from terrestrial soils. Three examples from Ontario are presented to illustrate these responses. Significant increases in pH and alkalinity have been observed in many lakes in the Sudbury area of Ontario due to the large reductions in local SO2 emissions; early-stage biological recovery is evident in these lakes. An integrated assessment model predicts that AQA emission reductions will not be sufficient to promote widespread chemical or biological recovery of Canadian lakes. Monitoring and modeling are mutually supporting assessment activities and both must continue. 相似文献
3.
This article measures the effect of an increase in productivityattributable to an increase in soil organic carbon associated with theincrease in the use of conservation practices in agriculture in theUnited States. Both the direct and indirect effects are calibrated. Theanalytical approach used consists of a dynamic computable generalequilibrium model composed of 14 producing sectors, 10 consumingsectors, seven household categories classified by income, and agovernment. The results suggest that the impact of a change inproductivity is an increase in output over a six year period starting in1998 in field crops. The most significant impact is felt in thelivestock sector. This is because field crops are a major input in theproduction of livestock. The food processing sector also exhibits arelatively large increase because of the increase in inputs of both fieldcrops and livestock. Manufacturing output increases primarily becauseoverall investment rises and most investment utilizes manufacturinggoods. The other producing sectors are generally unaffected by theincrease in agricultural production due to an increase in soil organiccarbon. Coincident with the increase in the production of field cropsis a relatively large decrease in the price of field crops. Othernoticeable price reductions occur in the livestock sector and the foodprocessing sector. For the consuming sectors, the consumption offood and alcohol and tobacco increase but consumption in all of theother sectors remains basically unchanged. Prices in the food andalcohol and tobacco sectors decline by about 1% while theprices in the other sectors remain static. Household welfare increasesin the aggregate by only 0.1% with this increase occurringuniformly across all household categories. Revenue received by thegovernment increases a modest 2% in response to an increase inoutput and, hence, an increase in taxes paid. The results indicate thatthere are significant production benefits for several sectors that can berealized by an increase in the use of conservation practices inagricultural production which, in turn, enhances soil organic carbon.There are a number of policy options available to promote the use ofconservation practices. These include education and technicalassistance, financial assistance, research and development, landretirement, and regulation and taxes. 相似文献
4.
Impervious Surface Area as a Predictor of the Effects of Urbanization on Stream Insect Communities in Maine, U.S.A. 总被引:2,自引:0,他引:2
The influence of urbanization on stream insect communities was determined by comparing physical, chemical, and biological characteristics of streams draining 20 catchments with varyinglevels of urban land-cover in Maine (U.S.A). Percent total impervious surface area (PTIA), which was used to quantify urbanland-use, ranged from 1–31% among the study catchments.Taxonomic richness of stream insect communities showed an abruptdecline as PTIA increased above 6%. Streams draining catchmentswith PTIA < 6% had the highest levels of both total insect and EPT (Ephemeroptera + Plecoptera + Trichoptera) taxonomic richness. These streams contained insect communities with a totalrichness averaging 33 taxa in fall and 31 taxa in spring; EPT richness ranged from an average of 15 taxa in fall and 13 taxa inspring. In contrast, none of the streams draining catchments with6–27% PTIA had a total richness > 18 taxa or an EPT richness> 6 taxa. Insect communities in streams with PTIA > 6% were characterized by the absence of pollution-intolerant taxa. The distribution of more pollution-tolerant taxa (e.g.Acerpenna (Ephemeroptera); Paracapnia, Allocapnia (Plecoptera); Optioservus, Stenelmis (Coleoptera); Hydropsyche, Cheumatopsyche (Trichoptera)), however, showed little relation to PTIA. In contrast to the apparent threshold relationship between PTIA and insect taxonomic richness, both habitat qualityand water quality tended to decline as linear functions of PTIA.Our results indicate that, in Maine, an abrupt change in stream insect community structure occurs at a PTIA above a threshold ofapproximately 6% of total catchment area. The measurement of PTIA may provide a valuable tool for predicting thresholds for adverse effects of urbanization on the health of headwater streams in Maine. 相似文献