共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
针对环境中常见且对人体危害极大的USEPA优先控制污染物多环芳烃(PAHs)在海水中的监测方法进行研究.以国家标准分析方法和美国环保局分析方法为基础,采用固相萃取-高效液相色谱法来测定.探讨了各条件对测定的影响,经过固相萃取,七种PAHs在反相高效液相色谱中有很好的分离效果,满意的回收率,方法简便,具有良好的应用前景. 相似文献
3.
为实现对环境水样中污染物PBDEs(多溴联苯醚)的预富集和分析,利用溶胶-凝胶法制取了一种MOFs(金属有机骨架材料)凝胶膜片微固相萃取装置,结合GC-ECD(气相色谱-电子捕获检测器)检测方法测定环境水样中的7种PBDEs,考察了MOFs用量、萃取温度、萃取时间和解吸时间对于萃取效果的影响. 结果表明,在MOFs用量为4mg、萃取温度为70℃、萃取时间为50min、解吸时间为15min的条件下,7种PBDEs单体的加标回收率为74.9%~98.1%,相对标准偏差为3.3%~5.7%,方法检出限均小于4.7ng/L. 相似文献
4.
多环芳烃在固相微萃取—气相色谱法分析中色谱保留行为的研究 总被引:1,自引:0,他引:1
利用固相微萃取技术-气相色谱法(SPME-GC)研究了多环芳烃(PAHs)的气相色谱保留行为特征.结果表明,在利用SPMC-GC分析PAH过程中,计算得的PAHs的Lee保留指数与传统的直接分析PAHs溶液所得的保留指数一致;同时,在不同色谱操作条件(如恒流,恒压和程序升压),利用SPMC-GC分析所得的保留指数再现性很好,所有上述不同操作条件下,PAHs的保留指数均能保持在1个指数单位范围内,能够满足定性分析的要求 相似文献
5.
建立了顶空固相微萃取(Head-space Solid phase microextraction,HS-SPME)与气相色谱-质谱(Gas chromatography and mass spectrometer,GC-MS)联用测定土壤中16种多环芳烃的快速分析方法。考察了萃取温度、萃取时间和加水量等因素对萃取效率的影响。结果表明,最佳萃取温度40℃,萃取时间30min,加水量3:5(m L/g)。同时对该方法的检出限、精密度、回收率等进行了评价,结果表明,该方法精密度良好,相对标准偏差小于5.05%,16种组分的回收率在82.8%~101.6%,检出限0.001~0.023μg/kg。该方法前处理步骤简单,灵敏度高,为土壤中的多环芳烃的检测提供了一种简便、快捷、可靠的测定方法。 相似文献
6.
超声萃取—高效液相色谱法测定土壤中多环芳烃 总被引:2,自引:0,他引:2
多环芳烃(简称PAHs)是一类具有致癌、致畸及致突变的持久性污染物。可靠的PAHs检测方法是研究其环境行为的重要保证。实验采用超声萃取、用固相萃取柱(SPE-C18)进行净化处理土壤样品,用液相色谱-荧光检测技术对美国环保署(USEAP)优先监测的15种多环芳烃污染物进行定量分析。实验结果表明,该方法对15种PAHs的最低检出限为0.231μg/kg-3.846μg/kg,回收率为51.48%-69.84%,相对标准偏差为6.84%-11.92%。 相似文献
7.
8.
固相萃取柱净化-液相色谱法测定大气中多环芳烃 总被引:6,自引:1,他引:6
建立以乙腈一水为流动相,高效液相色谱法测定大气颗粒物中16种优控多环芳烃化合物的方法。用玻璃纤维滤膜采集大气颗粒物,以二氯甲烷为溶剂,超声波提取样品,提取液过滤经溶剂转换后在C18硅胶柱上分离净化,洗脱液经氩气吹干浓缩后用乙腈定容,用乙腈一水作流动相进行高效液相色谱梯度洗脱分离,荧光检测器变波长程序检测。通过实验优化了16种多环芳烃化合物的分离和测定条件。16种PAH检测限为O.023~O.45μg/L,日内(n=5)和日问(n=5)相对标准偏差分别为小于1.20%和小于2.3%。该法具有快速、灵敏、准确、重现性好的优点,适合于大气中痕量多环芳烃的测定。 相似文献
9.
建立以乙腈-水为流动相,高效液相色谱法测定大气颗粒物中16种优控多环芳烃化合物的方法。用玻璃纤维滤膜采集大气颗粒物,以二氯甲烷为溶剂,超声波提取样品,提取液过滤经溶剂转换后在C18硅胶柱上分离净化,洗脱液经氩气吹干浓缩后用乙腈定容,用乙腈-水作流动相进行高效液相色谱梯度洗脱分离,荧光检测器变波长程序检测。通过实验优化了16种多环芳烃化合物的分离和测定条件。16种PAH检测限为0.023~0.45μg/L,日内(n=5)和日间(n=5)相对标准偏差分别为小于1.20%和小于2.3%。该法具有快速、灵敏、准确、重现性好的优点,适合于大气中痕量多环芳烃的测定。 相似文献
10.
建立以乙腈-水为流动相,高效液相色谱法测定大气颗粒物中16种优控多环芳烃化合物的方法.用玻璃纤维滤膜采集大气颗粒物,以二氯甲烷为溶剂,超声波提取样品,提取液过滤经溶剂转换后在C18硅胶柱上分离净化,洗脱液经氩气吹干浓缩后用乙腈定容,用乙腈-水作流动相进行高效液相色谱梯度洗脱分离,荧光检测器变波长程序检测.通过实验优化了16种多环芳烃化合物的分离和测定条件.16种PAH检测限为0.023~0.45 μg/L,日内(n=5)和日间(n=5)相对标准偏差分别为小于1.20%和小于2.3%.该法具有快速、灵敏、准确、重现性好的优点,适合于大气中痕量多环芳烃的测定. 相似文献
11.
12.
13.
随着我国城市化进程的迅速发展,城市中加油站数量越来越多,加油站油品的成分含量复杂多样,在石油逸散过程中会生成一系列污染物.加油站产生的多环芳烃(PAHs)会污染其附近土壤,同时对人体健康产生影响.收集了北京市117个加油站附近的土壤样品(0~20 cm),分析了7种PAHs的含量,基于BP神经网络模型,预测了2025年和2030年北京市加油站土壤PAHs含量.结果表明,7种ω(PAHs)范围在0.01~3.53 mg·kg-1之间,与《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中土壤污染风险筛选值比较,PAHs含量低于该指标,同时上述7种PAHs的毒性当量(TEQ)均低于世界卫生组织(WHO)的标准值(1 mg·kg-1),表明它们对人体健康有较低风险.预测结果显示,快速发展的城市化与土壤PAHs含量的增加具有正相关的关系,至2030年,北京市加油站土壤PAHs的含量将持续增长.2025年和2030年北京市加油站土壤中ω(PAHs)的范围分别为0.085~4.077 mg·kg-1和... 相似文献
14.
文章在不同类型灌溉用水的三个典型灌区进行土壤精细剖面钻探采样分析,研究16种优控多环芳烃在土壤剖面的分布特征和不同灌溉条件对土壤质量的影响。结果表明:表土是多环芳烃的主要累积层位,污灌区、再生水灌区、清灌区表土的多环芳烃总量分别为726、200、34μg/kg,说明长期进行污水和再生水灌溉均会造成不同程度的土壤污染;受多环芳烃自身理化性质的影响,低环的多环芳烃容易向土壤剖面的深部迁移,在表土以下的层位占绝对优势分布,高环的多环芳烃迁移性很弱,基本只在表层有检出;通过对各灌区剖面的典型多环芳烃含量和土壤理化指标进行相关分析和回归分析,得出TOC是多环芳烃在土壤剖面垂向迁移的主要影响因素。 相似文献
15.
青藏高原东部土壤中多环芳烃的污染特征及来源解析 总被引:9,自引:9,他引:9
分析了青藏高原东部5个地区10个采样点表层土壤的PAHs含量特征和污染水平.结果表明,该地区土壤的多环芳烃总量为0.83~14.41 ng/g,其中菲的含量最高,同我国其他地区相比,其污染水平较低.曲水县6个采样点PAHs含量分布表明,除国道边1个采样点由于处于主导风向下风向而受到机动车尾气影响外,其他5个点均具有相似的面源污染即地质成因来源.结合分析拉萨、曲水、巴青、昌都和格尔木5个地区PAHs含量分布特征,发现高原东部昆仑山脉以西的大部分地区(拉萨、曲水、巴青和昌都)土壤中的PAHs有相同的地质成因来源.由于土壤性质、昆仑山脉天然的地理障碍等原因,格尔木戈壁土壤的PAHs来源则主要受到燃烧源的影响. 相似文献
16.
随着我国煤炭行业的不断发展,有关煤矿区及周边有机污染物研究正逐渐受到全社会广泛关注。本文利用气相色谱-质谱方法对内蒙古乌达矿区不同土地利用类型的土壤样品中多环芳烃含量和空间分布情况进行分析。结果表明,研究区土壤中8种多环芳烃的总含量均值为2 054 ng/g。尤其发现,土壤样品中烷基多环芳烃含量显著高于母体多环芳烃。从空间分布上来看,多环芳烃含量较高的位置集中在研究区西南方位,以8号水泥厂采样点和9号工业园采样点为中心分布。相关性分析表明,土壤中母体多环芳烃和烷基取代多环芳烃相关性较好,且环数越高,相关性越强,而多环芳烃与重金属汞并不存在明显的相关性。研究乌达矿区土壤中多环芳烃的污染情况和空间分布特征,分析煤矿开采及煤火问题对周边环境的影响,以期为煤矿区周围环境治理提供参考。 相似文献
17.
广州市小学生多环芳烃内暴露水平 总被引:1,自引:0,他引:1
为了解广州市小学生多环芳烃内暴露水平,于2014年9月15~20日在广州市居民区与工业区分别采集了78名、86名小学生的晨尿样品,并利用快速液相色谱-三重四级杆串联质谱仪同时检测了样品中10种羟基多环芳烃(OH-PAHs)含量.结果表明,居民区和工业区小学生尿液中ΣOH-PAHs分别为0.83~80.63μmol·mol~(-1)和1.06~72.47μmol·mol~(-1),几何平均值为6.18μmol·mol~(-1)和6.47μmol·mol~(-1),居民区略低于工业区(无统计学意义,P0.05).比较两个区域OH-PAHs不同组分的暴露水平,居民区小学生尿液中1-OHP的暴露水平明显高于工业区(具有统计学意义,P0.05),其他组分无显著差异,与国内外已有研究相比,本研究小学生尿液中OH-PAHs含量较高值得关注.其次,居民区小学生体内OH-PAHs单体之间均显著相关(P0.01),相关系数在0.511~0.928之间;工业区小学生尿液1-OHP与2-OHN、1-OHP与1-OHN之间无显著相关性,其他OH-PAHs单体之间均显著相关(P0.01),相关系数在0.338~0.855之间.这一差异可能指示不同功能区小学生多环芳烃暴露源的差异性,居民区相对单一,而工业区因工业企业、物流交通的排放呈现多源性. 相似文献
18.
19.
用常规荧光法分析了土壤中多环芳烃总体特征光谱,同时以多环芳烃蒽作参比,定量估测了多环芳烃在土壤中的含量。蒽的线性范围0-2.0μg/mL,相关系数0.9996,检测限0.61ng/mL;测得土壤中的多环芳烃的测量浓度均〉1.01μg/g。 相似文献