首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At One Tree Reef, Great Barrier Reef, Australia, between 1983 and 1985, corals killed by the crown of thorns seastar Acanthaster planci L. gave rise to skeletons which were colonised rapidly by blue-green and other algae. For the next 3 to 9 mo these coral skeletons showed over three times more nitrogen fixation (acetylene reduction) than control substratum rates (9 to 32 nmol vs 3 to 10 nmol C2H2 cm-2 h-1, over all seasons). These values convert to relatively high annual fixation rates of 37 to 127 kg N ha-1 yr-1 but, at the low densities of A. planci on One Tree Reef (ca. 0.65 ha-1), this has little impact on the total nitrogen fixation rate and, as a result, on the level of organic nitrogen in the system. However, it is suggested that on reefs subjected to high aggregations of a. planci such an effect would enhance the level of organic nitrogen and lead to greater primary and secondary production throughout the reef system.  相似文献   

2.
Grazing effects on nitrogen fixation in coral reef algal turfs   总被引:2,自引:0,他引:2  
This study addressed whether grazing by the sea urchin Diadema antillarum influenced rates of nitrogen fixation by algal turf communities on Caribbean coral reefs. Because the turfs were nitrogen-limited, we also assessed whether newly-fixed nitrogen was important for supporting net primary productivity by the turfs. We measured acetylene reduction in turfs grown in treatments excluding or including D. antillarum in the presence of other herbivores at 3 m water depth on Tague Bay forereef, St. Croix, U.S. Virgin Islands. These were the first measurements of acetylene reduction on coral reefs under quasi-natural conditions of high water-flow and photosynthetic oxygen generation. Rates of acetylene reduction under these conditions were as high as any measured previously in coral reef communities (mean 7.6 nmol C2H4 cm−2 h−1). Algal turfs grazed by D. antillarum and other herbivores had chlorophyll-specific acetylene reduction rates up to three times higher than when D. antillarum was excluded. High rates of nitrogen fixation by the turfs were sufficient to meet <2% of the nitrogen required to support net chlorophyll-specific primary productivity over 24 h. Grazer-mediated increases in nitrogen fixation do not appear responsible for a parallel enhancement of net primary productivity. Algal turfs at this site must be dependent primarily on external sources of nitrogen. Received: 1 July 1997 / Accepted: 5 September 1997  相似文献   

3.
This study was undertaken in 1981 to determine whether there were major variations in potential rates of nitrogen fixation on apparently bare coralline substrate from reefs across the continental shelf of the central Great Barrier Reef. Nitrogen fixation, measured as rates of ethylene production (nmol cm-2h-1), was significantly lower on substrata from two inner-shelf reefs, (0.46 and 1.07) than on two middle-shelf reefs (2.10 and 2.97) and on two outer-shelf reefs (3.20 and 3.81). By contrast, algal biomass (mg cm-2) on experimental substrate was significantly higher on inner-shelf reefs (80.8 and 59.4) than on middleshelf (27.1 and 23.8) and outer-shelf reefs (26.4 and 22.4). The rate of nitrogen fixation was positively correlated with the proportion of bare substratum and significantly higher concentrations of dissolved inorganic nitrogen were found in waters over the reefs than in water flowing onto those reefs. The abundance of algal-grazing fishes was reported previously to be significantly lower on inner-shelf reefs. It is suggested that this cross-shelf variation in the activity of algal-grazing fishes may be a determinant of the observed cross-shelf variations in potential nitrogen fixation.Contribution No. 233 from the Australian Institute of Marine Science  相似文献   

4.
Coral reef lagoons have generally been regarded as sinks for organic matter exported from more productive reef front and reef flat zones. The object of this study was to examine the importance of detritus as a carbon source for benthic communities in the lagoon at Davies Reef, central Great Barrier Reef. We report the results of seasonal measurements, taken in 1986, of bacterial numbers and production, protozoan numbers, community primary production and respiration in the sediments of Davies Reef lagoon. Deposition rates of organic matter in the lagoon were also measured. Deposition rates (±1 SE) of carbon ranged from 9.2 (±1.5) to 140.7 (±10.3) mg Cm-2d-1. Deposition rates were highest in winter and spring, lowest in summer. Rates of bacterial production ranged from 4.7 (±0.2) pmol thymidine incorporated g-1 dry wt (DW) h-1 in winter to 23.5 (±1.0) pmol thymidine incorporated g-1 DW h-1 in spring. The number of ciliates ranged from 65 (±10) to 356 (±50) cm-3 through the year and the number of large (20 m) flagellates from 38 (±7) to 108 (±16) cm-3. There were no clear relationships between the sediment organic content, detrital input or temperature and the rates of bacterial processes, community metabolism or the standing stocks of microbes in the lagoon. The relative significance of detritus and in situ primary production as sources of carbon in the lagoon varied with season. In summer and autumn, detritus was less important than primary production as a source of carbon (4 to 27% of total carbon input). In winter and spring, detritus input became more significant in supply of carbon to the sediments (32 to 67% of the total carbon input). The lagoon does not simply act as a sink for carbon exported from the reef flat. We calculate that only 5% of the net reef flat primary production reached lagoon sediments in summer, but nearly 40% in winter.  相似文献   

5.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

6.
N2 fixation (C2H2 reduction) was associated with several species of macroalgae on a coral reef near Grand Bahama Island. The highest rates were associated with Microdictyon sp. (Chlorophyceae) and Dictyota sp. (Phaeophyceae). Extensive mats of filamentous blue-green algae, not heterotrophic bacteria, were the N2 fixing agents: in experiments with samples of Microdictyon sp., the activity was lightdependent and not stimulated by organic compounds under either aerobic or anaerobic conditions. Assays in situ, at 20 m depth, and on shipboard, gave similar rates of N2 fixation; the cyanophytes presumably have pigment adaptations to function in blue light. The maximum rate of N2 fixation, associated with Microdictyon sp., was 3.8 g N fixed g dry weight-1 h-1. Coral-reef communities flourish in nutrientimpoverished waters, and therefore any input of nitrogen is probably important in stabilizing such ecosystems.  相似文献   

7.
Over 15 000 coral recruits were counted on settlement plates from three mid-shelf reefs and six fringing reefs in the northern section of the Great Barrier Reef during two summers (1986 and 1987) and one winter (1987). The density of coral recruits on some settlement plates from a fringing reef was up to 4.88 cm–2, the highest value ever reported. Mean density of recruits was greater on fringing reefs (81.1 recruits/settlement plate) than on mid-shelf reefs (15.6 recruits/settlement plate), but there was greater spatial variation in abundance of recruits between the fringing reef sites. Other differences between the mid-shelf reefs and the fringing reefs were that different taxa were dominant, and that settlement orientation differed, with mid-shelf recruits settling preferentially on horizontally oriented surfaces and fringingreef recruits preferring vertical surfaces. Of the three midshelf reefs, Green Island reef recorded the highest recruitment rate for each of the two summers, despite having a depauperate adult coral population following predation by the asteroidAcanthaster planci. This suggests that coral larvae frequently travel between reefs. In contrast with an earlier study, there was no consistent difference in abundance of recruits between forereef and backreef locations. Overall, the results indicated great spatial variation in the availability of coral larvae, both on the scale of whole reefs and within-reef habitats.  相似文献   

8.
Nitrogen excretion rates of demersal macrozooplankton were measured together with nitrogen concentrations in the water column and sediments in lagoons of Heron Reef and One Tree Reef, Great Barrier Reef, Australia, during August and November 1991. Excretion rates increased with body weight, and weight-specific excretion rates of the demersal macrozooplankton were comparable to those of pelagic zooplankton and meiofauna in the Great Barrier Reef. Values of demersal macrozooplankton abundance from previous studies and excretion rates from this study were combined to estimate fluxes of ammonium from demersal macrozooplankton in coral reef lagoons. The estimated fluxes in the water column and sediments were 12 M NH4 m-2 d-1 and 34 M NH4 m-2d-1, respectively. These fluxes were compared with reported fluxes of ammonium in coral reef lagoons in the Great Barrier Reef, Australia. The estimated flux from the demersal macrozooplankton in the water column was 29 and 9% of those reported for microheterotroph regeneration and phytoplankton utilization, respectively. It was 10% of the reported advective flux during periods of low advection and 13% of the maximum efflux from sediments computed from diffusion models. The estimated flux from the demersal macrozooplankton in the sediments exceeded those reported for meiofauna, and was 5 to 32% and 2 to 13% of those reported for ammonification and utilization in sediments, respectively. The potential importance of demersal macrozooplankton in mediating sediment-water column exchanges in the absence of diffusive effluxes and when they swarm is discussed.  相似文献   

9.
The calcium carbonate budget of coral reefs is the result of the interaction of the processes of calcification and biological degradation, and is reflected in the chemical properties of the seawater overlying the reefs. A series of experiments at Moorea Island (French Polynesia) in 1988 monitored the diurnal and nocturnal variations in the chemical properties of seawater under field and laboratory conditions. Our results revealed that in the study area (Tiahura barrier reef flat), the calcium carbonate budget varied over space and time as a function of location in the water current. Two in-situ sites were investigated; one was situated 100 m from the algal crest of the barrier reef, the other 300 m further downstream. As a result of cumulative upstream events, the daily net calcification was ten times higher at the downstream (5.22 gm-2 d-1) than at the upstream (0.45 gm-2 d-1) site. The carbonate uptake by in situ Porites lobata in enclosures (8 kgm-2 yr-1) was ten times higher than the uptake by the whole community in the surrounding water (0.8 kgm-2 yr-1) and five times higher than that recorded for P. lobata in laboratory experiments (1.4 kgm-2 yr-1), where illumination levels were 10% of in situ levels. In laboratory experiments, the planktonic fraction of the seawater had no perceptible influence on the calcium carbonate budget. In the absence of bioeroders, living coral totally depleted the carbonate content of the seawater (3.7 gm-2d-1). Bioerosive organisms played an important role in restoring this calcium carbonate; e.g. sea urchins grazing on algal turf covering dead coral ingested CaCO3 and released this as a carbonate powder (1.26 gm-2d-1); a form of carbonate which is extremely accessible to chemical dissolution.  相似文献   

10.
Demersal zooplankton, those plankton which hide within reef sediments during the day but emerge to swim freely over the reef at night, were sampled quantitatively using emergence traps planced over the substrate at Lizard Island Lagoon, Great Barrier Reef. Densities of zooplankton emerging at night from 6 substrate types (fine, medium, and coarse sand, rubble, living coral and reef rock) and from 5 reef zones (seaward face, reef flat, lagoon, back reef, and sand flat) were determined. A large population of nocturnal plankton including cumaceans, mysids, ostracods, shrimp, isopods, amphipods, crustacean larvae, polychaetes, foraminiferans and copepods are resident members of the reef community at Lizard Island. The mean density of plankton emerging throughout the reef was 2510±388 (standard error) zooplankton/m2 of substrate. Biomass averaged 66.2±5.4 mg ash-free dry weight/m2 of substrate. Demersal zooplankton exhibited significant preferences for substrate types and reef zones. The highest mean density of zooplankton emerged from coral (11,264±1952 zooplankton/m2) while the lowest emerged from reef rock (840±106 zooplankton/m2). The density of demersal plankton was six times greater on the face than in any other zone, averaging 7900±1501 zooplankton/m2. Copepods dominated samples collected over living coral and rubble while foraminiferans, ostracods and decapod larvae were most abundant from sand. Plankton collected with nets at night correlated only qualitatively with plankton collected in emergence traps from the same location. Although abundant, demersal plankton were not numerous enough to meet the metabolic needs of all corals at Lizard Island Lagoon. Demersal plankton appear especially adapted to avoid fish predation. The predator-avoidance strategies of demersal plankton and maintenance of position on the reef are discussed. Our results indicate that much of the zooplankton over coral reefs actually lives on the reef itself and that previous studies using standard net sampling techniques have greatly underestimated plankton abundance over coral reefs.  相似文献   

11.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

12.
The distribution of the main herbivorous fishes (Acanthuridae, Scaridae, Siganidae) was studied across a coral reef of the Jordanian coast in the Gulf of Aqaba (Red Sea). Visual counts were realized by diving along transects (200 m long and 5 m wide), parallel to the shore, at 10 stations located from the lagoon to 40 m deep on the outer reef slope. Herbivorous reef fishes reach their highest abundance on the reef front, where 234 fishes were counted per 1,000 m2. Their density decreases on the reef flat, with an average of 150 fish 1,000 m-2, and is lowest on the outer reef slope (69 fish 1,000 m-2). Surgeonfishes form 63% of the herbivorous ichthyofauna, parrotfishes 35%, and rabbitfishes 2%. Families and species display different distributions according to biota. The Acanthuridae dominate on the reef flat, whereas the Scaridae are more numerous on the outer reef slope. The evolution of the social structure of the main species was observed: the adults generally school in the lagoon and on the reef flat, but are mainly solitary on the reef slope. The distribution of juvenile individuals is more restricted: they are concentrated on the reef front and on the upper part of the reef slope.This study is part of a cooperation programme between the University of Nice (France) and the University of Jordan, to study the ecology of the coral reefs and the surrounding waters of the Jordanian coast (Gulf of Aqaba, Red Sea)  相似文献   

13.
Ecological surveys involving over 500 man-days between 1966 and 1969 indicate that the coral-eating sea star, Acanthaster planci, is a normal component of the coral reef community throughout the tropical Pacific, and that its abundance in the past has probably been underestimated. The sea star is not uncommon in certain environments, particularly back-reef and lagoon slopes. Sheltered, inner reefs are generally preferred over less protected reefs. Recently reported population explosions of A. planci at Guam and on the Great Barrier Reef of Australia appear to be isolated, widely-separated, local infestations of unknown cause. The infestation on the Great Barrier Reef has not spread beyond the area off Cairns and Innisfail. Approximately 40 of the more than 1000 reefs comprising the Great Barrier Reef complex have been infested heavily.  相似文献   

14.
Glassom  D.  Zakai  D.  Chadwick-Furman  N. E. 《Marine Biology》2004,144(4):641-651
Recruitment rates of stony corals to artificial substrates were monitored for 2 years at 20 sites along the coast of Eilat, northern Red Sea, to compare with those recorded at other coral reef locations and to assess variation in recruitment at several spatial scales. Coral recruitment was low compared to that observed on the Great Barrier Reef in Australia, but was similar to levels reported from other high-latitude reef locations. Pocilloporids were the most abundant coral recruits in all seasons. Recruitment was twofold higher during the first year than during the second year of study. There was considerable spatial variability, with the largest proportion of variance, apart from the error term, attributable to differences between sites, at a scale of 102 m. Spearmans ranked correlation showed consistency in spatial patterns of recruitment of pocilloporid corals between years, but not of acroporid corals. During spring, when only the brooding pocilloporid coral Stylophora pistillata reproduces at this locality, most coral recruitment occurred at central and southern sites adjacent to well-developed coral reefs. During summer, recruitment patterns varied significantly between years, with wide variation in the recruitment of broadcasting acroporid corals at northern sites located distant from coral reefs. Settlement was low at all sites during autumn and winter. This work is the first detailed analysis of coral recruitment patterns in the Red Sea, and contributes to the understanding of the spatial and temporal scales of variation in this important reef process.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
The 1998 bleaching event and its aftermath on a coral reef in Belize   总被引:5,自引:0,他引:5  
Widespread thermal anomalies in 1997-1998, due primarily to regional effects of the El Niño-Southern Oscillation and possibly augmented by global warming, caused severe coral bleaching worldwide. Corals in all habitats along the Belizean barrier reef bleached as a result of elevated sea temperatures in the summer and fall of 1998, and in fore-reef habitats of the outer barrier reef and offshore platforms they showed signs of recovery in 1999. In contrast, coral populations on reefs in the central shelf lagoon died off catastrophically. Based on an analysis of reef cores, this was the first bleaching-induced mass coral mortality in the central lagoon in at least the last 3,000 years. Satellite data for the Channel Cay reef complex, the most intensively studied of the lagoonal reefs, revealed a prolonged period of elevated sea-surface temperatures (SSTs) in the late summer and early fall of 1998. From 18 September to 1 October 1998, anomalies around this reef averaged +2.2°C, peaking at 4.0°C above the local HotSpot threshold. In situ temperature records from a nearby site corroborated the observation that the late summer and early fall of 1998 were extraordinarily warm compared to other years. The lettuce coral, Agaricia tenuifolia, which was the dominant occupant of space on reef slopes in the central lagoon, was nearly eradicated at Channel Cay between October 1998 and January 1999. Although the loss of Ag. tenuifolia opened extensive areas of carbonate substrate for colonization, coral cover remained extremely low and coral recruitment was depressed through March 2001. High densities of the sea urchin Echinometra viridis kept the cover of fleshy and filamentous macroalgae to low levels, but the cover of an encrusting sponge, Chondrilla cf. nucula, increased. Further increases in sponge cover will impede the recovery of Ag. tenuifolia and other coral species by decreasing the availability of substrate for recruitment and growth. If coral populations are depressed on a long-term basis, the vertical accretion of skeletal carbonates at Channel Cay will slow or cease over the coming decades, a time during which global-warming scenarios predict accelerated sea-level rise.  相似文献   

16.
The production, release, and subsequent consumption of coral mucus on reefs has been portrayed as a potential pathway for the transfer of coral and zooxanthellae production to other reef organisms. However, reported mucus production rates and analyses of nutritional value vary widely. Poritid corals provide a test system to measure mucus production because they produce mucous sheets which can be collected quantitatively. Fluid mucus and mucous sheets were collected fromPorites astreoides, P. furcata, P. divaricata during 1986 and 1987 on reefs in the San Blas Islands, Panama, La Parguera, Puerto Rico and the Florida Keys, USA. Mucus samples were collected from Indo-pacific poritids (P. australiensis, P. lutea, P. lobata, andP. murrayensis) on the Great Barrier Reef during 1985. Biochemical analyses of the fluid mucous secretions, and the derivative mucous sheet, indicate that the mucus is primarily a carbohydrateprotein complex.Porites fluid mucus had a mean caloric content of 4.7 cal mg–1 ash-free dry weight (AFDW), while mucous sheets contained 3.5 cal mg–1 AFDW. Sixty-eight percent of the mucous sheet was ash, while fluid mucus was 22% ash. The high ash and low organic contents suggest that mucous sheets have a low nutritional value. C:N ratios varied (range 6.9 to 13.7 for fluid mucus, and 4.8 to 5.9 for mucous sheets), but were similar to typical C:N ratios for marine organisms. Bacterial numbers and chlorophyll a concentrations were higher on mucous sheets than in the surrounding water. Although bacteria aggregate on mucous sheets, bacteria accounted for less than 0.1% of the carbon and nitrogen content of the mucous sheet. Lower C:N ratios in aged mucus, i.e. mucous sheets versus fluid mucus, were attributed to a loss of carbon rather than an increase in nitrogen. Mucous sheet production accounts for a small proportion (< 2% gross photosynthesis) of published values for coral production. In the San Blas Islands, Panama,P. astreoides produced mucous sheets at a rate of 1.5 g C m–2 y–1 and 0.3 g N m–2 y–1.P. astreoides andP. furcata produced mucous sheets with a lunar periodicity and may provide approximately monthly pulses of carbon and nitrogen to the reef food-web. However, the low annual production rates suggest that mucous sheets make a small contribution to overall energy flow on coral reefs.  相似文献   

17.
Electrophoretic variation in proteins encoded by 23 loci revealed substantial genetic differentiation among populations of bicolor damselfish (Eupomacentrus partitus) collected from four coral reefs in the Florida Keys, USA, during 1986–1988. Genetic differentiation was concentrated between a sample collected from Little Grecian Rocks Reef (LGR) and the remaining samples, including fish from a reef only 600 m distant (Grecian Rocks Reef). Genetic distinction of the LGR sample derived from significantly heterogenous allelic frequencies at six of eight polymorphic loci. Aco-1 (aconitase); Ada (adenosine deaminase); Gpi-2 (glucosephosphate isomerase); Ldh-2 and Ldh-3 (lactate dehydrogenase); and Me-1 (malic enzyme); nevertheless, differentiation at cytosolic aconitase (Aco-1) far exceeded that observed for other loci (fixation index, F ST=0.482), and differences in Aco-1 allele frequencies were largely responsible for large genetic distances (0.20) between LGR and the other reefs. Paradoxically, estimates of numbers of migrants exchanged between reefs per generation (mN e=17.47) indicated the potential for extensive gene flow. The extent of genetic differentiation among these populations is evaluated relative to models of population genetic structure based on equilibrium between gene flow and natural selection or genetic drift.  相似文献   

18.
Biomass of suspended bacteria over coral reefs   总被引:2,自引:0,他引:2  
The biomass of bacteria suspended in water flowing over coral reefs at Lizard Island and Yonge Reef (Northern Great Barrier Reef) was estimated by measurement of muramic acid. Values ranged from 20 mg C m-3 in the open water up to about 60 mg C m-3 over the reef flat. Direct counts of total numbers of free bacteria were made for comparison. Values of around 2.0x109 cells g-1 muramic acid showed that there was a good agreement between direct counts and muramic acid content of free bacteria in the open water. In samples containing suspended particulate matter, ratios of direct counts to muramic acid concentration were lower, because bacteria on particles could not be counted. Thus, these ratios were used to indicate the proportions of bacteria attached to particles. Changes in the biomass and numbers of bacteria were determined in water masses identified either by a drogue or fluorescein, as they moved across the reefs. In the zone on the outside of the reef, the number of free bacteria decreased compared to open sea water, but total biomass increased, showing that particulate matter containing bacteria was thrown up into suspension. About 50% of bacteria were attached to particles. Water flowing over the reef flats contained much particulate material with bacteria attached. Bacteria constituted between about 5 and 20% of particulate organic carbon.  相似文献   

19.
The diet of cavity sponges on the narrow fringing reefs of Curaçao, Caribbean was studied. The origin and resources of the bulk food of these sponges, i.e., dissolved organic matter (DOM), were identified using stable carbon and nitrogen isotopes and fatty acid biomarkers. We found that phytoplankton and its derived DOM from the adjacent open sea and from reef overlying water is not the main source of food for most of the sponges examined nor is bacterioplankton. Interestingly, dual stable isotope signatures (δ13Corg, δ15Norg) and fatty acid biomarkers appoint coral mucus and organic matter derived from crustose coralline algae (CCA) as probable food sources for encrusting sponges. Mucus-derived DOM may contribute up to 66% to the diet of examined sponges based on results of dual isotope mixing model analysis. The contribution of CCA (as purported representative for benthic algae) was smaller with values up to 31%. Together, mucus- and CCA-derived substrates contributed for 48–73% to the diet of sponges. The presence of the exogenous fatty acid 20:4ω6 in sponges, which is abundant in coral mucus of Madracis mirabilis and in CCA, highlights these reef-derived resources as sources of nutrition for DOM feeding cavity sponges. The relatively high concentrations of exogenous 20:4ω6 in all sponges examined supports our hypothesis that the bulk of the food of the cavity sponge community is reef-derived. Our results imply that cavity sponges play an important role in conserving food and energy produced within the reef.  相似文献   

20.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号