首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A study of background radiation and the distribution of radionuclides in the environment of the proposed uranium mining sites of Kylleng-Pyndensohiong (Mawthabah) areas, West Khasi Hills District, Meghalaya, India, has been carried out with the objective of establishing a baseline radiation level of the region. Topsoil samples collected from the region are analysed for radioactivity measurements of primordial radionuclides by gamma-spectrometry technique. Direct dose measurement using a survey meter was also carried out simultaneously. Measurement carried out in the region shows that the activity concentration of (238)U and (232)Th in soil samples is found to be highest in Kylleng with respective median values of 335.3Bqkg(-1) and 283.9Bqkg(-1) followed by Syngkai with activity concentration of 285.3Bqkg(-1) and 257.4Bqkg(-1) for (238)U and (232)Th, respectively. The distribution of (40)K concentration in the study area is found to be in the range of 173.1-359.0Bqkg(-1) which is below the global and Indian average values of 420Bqkg(-1) and 394Bqkg(-1), respectively. The contribution of the primordial radionuclides to the total dose of the study area is found to be very high with a range of 136.8-334.5nGyh(-1) in comparison to the global as well as Indian average values.  相似文献   

2.
The Brazilian phosphate fertilizer is obtained by wet reaction of igneous phosphate rock with concentrated sulphuric acid, giving as final product, phosphoric acid and dehydrated calcium sulphate (phosphogypsum) as by-products. Phosphoric acid is the starting material for triple superphosphate (TSP), single superphosphate (SSP), monoammonium phosphate (MAP) and diammonium phosphate (DAP). The phosphate rock used as raw material presents in its composition radionuclides of the U and Th natural series. Taking this into account, the main aim of this paper is to evaluate the fluxes of natural radionuclides and radioactive disequilibria involved in the Brazilian industrial process of phosphoric acid production; to determine the content of radioactivity in several commercial fertilizers produced by this industry; to estimate their radiological impact in crop soils and the long term exposure due to their application. Radiological characterization of phosphate rock, phosphogypsum and phosphate fertilizers was performed by alpha and gamma spectrometry. The fertilizer samples, which are derived directly from phosphoric acid, MAP and DAP, presented in their composition low activity concentrations for 226Ra, 228Ra and 210Pb. As for U and Th, the concentrations found in MAP and DAP are more significant, up to 822 and 850Bqkg(-1), respectively. SSP and TSP, which are obtained by mixing phosphoric acid with different amounts of phosphate rock, presented higher concentrations of radionuclides, up to 1158Bqkg(-1) for (238)U, 1167Bqkg(-1) for (234)U, 1169Bqkg(-1) for 230Th, 879Bqkg(-1) for 226Ra, 1255Bqkg(-1) for 210Pb, 521Bqkg(-1) for 232Th, 246Bqkg(-1) for 228Ra and 302Bqkg(-1) for 228Th. Long term exposure due to successive fertilizer applications was evaluated. Internal doses due to the application of phosphate fertilizer for 10, 50 and 100 years were below 1mSvy(-1), showing that the radiological impact of such practice is negligible.  相似文献   

3.
A gamma-ray survey and analysis of 16 riverbed samples from the Reedy River watershed near Simpsonville, SC were conducted and compared with national and international studies of primordial radionuclides. The study reported here follows on a recent discovery of anomalously high uranium concentrations in several private well waters in the area. An HPGe spectrometer was used for quantification of gamma emitting radionuclides in the sediments. All sediments contained radionuclides from the uranium and thorium series as well as (40)K. Uranium-238 concentrations in sediment samples ranged from 11.1 to 74.2Bqkg(-1). The measured radionuclide concentrations were compared with data from UNSCEAR and NURE reports. The river and stream sediment data were augmented by in situ NaI(Tl) gamma-ray spectrometer measurements. Comparisons between the ex situ and in situ measurements indicate equivalently distributed uranium in the surface soils and stream sediments, the source of which is likely attributed to the monazite belts that are known to exist in the area.  相似文献   

4.
The aim of this work was to determine the concentration of 234U and 238U and calculate the values of the 234U/238U activity ratio in waters and sediments from the various regions of the southern Baltic Sea: Gdańsk Deep, S?upsk Narrow and Bornholm Deep. The concentration of uranium in analysed sediments from southern Baltic increase with core depth to what probably is connected with diffusion from sediments to water through interstitial water, where uranium concentration is much higher than in bottom water. The highest concentrations of uranium were observed in sediments of S?upsk Narrow (0.66-7.11 mg kg(-1) d.w.) and S?upsk Bank (0.61-6.93 mg kg(-1) d.w.), the lowest in sediments from Bornholm Deep (0.54-3.77 mg kg(-1) d.w.). The 234U/238U activity ratio results indicated that the sedimentation of terrigenic material and Vistula River transport are the general sources of uranium in the southern Baltic sediments. The value of 234U/238U activity ratio in sediments from reduction areas from southern Baltic (Gdańsk Deep and Bornholm Deep) indicated that reduction process of U(VI) to U(IV) and removing of anthropogenic uranium from seawater to sediments constitutes a small part only in Gdańsk Deep.  相似文献   

5.
Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure, and genetic diversity were used to investigate impacts of uranium (U) exposure on periphyton. Laboratory exposures of periphyton in river water amended with 238U were performed for 5 days, followed by 2 days of U depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 microg238U L(-1). Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns revealed no changes in community or genetic structure related to U exposure. We suggest that the periphyton community as a whole was not significantly impacted by exposures of 238U up to a concentration of 100 microgL(-1). These findings have significance for the assessment and prediction of U impacts on aquatic ecosystems.  相似文献   

6.
Gamma-ray spectrometry was used to determine uranium activity and investigate the presence of depleted uranium in soil samples collected from camping sites of the Greek expeditionary force in Kosovo. Assessment of 238U concentrations was based on measurements of the 63.3 keV and 92.38 keV emissions of its first daughter nuclide, 234Th. To determine the isotopic ratio of 238U/235U, secular equilibrium along the two radioactive series was first ensured and thereby the contribution of 235U under the 186 keV peak was deduced. The uranium activity in the samples varied from 48 to 112 Bq kg(-1), whereas the activity ratio of 238U/235U averaged 23.1+/-4.3.  相似文献   

7.
A systematic survey of dissolved uranium activity was carried out in the Seine and the Marne over one year. A small watershed, the Grand Morin, included in the Seine one, was also investigated from stream to medium-sized rivers. The Melarchez stream exhibits low but variable dissolved 238U levels (3.3 +/- 2.0 mBq l(-1)). Thereafter, uranium activities show a rapid increase to reach, from the Grand Morin River, a rather constant range (8-11 mBq l(-1)). On the Marne before the confluence with the Seine, dissolved 238U is nearly invariable (9.1 +/- 0.8 mBq l(-1)), for flow rates comprised between 60 and 423 m3 s(-1). Dissolved 238U in the Seine corresponds to almost triple the global mean riverine uranium concentration. In the estuary of the Seine, uranium shows a gradual increase, resulting from conservative mixing of river with sea waters.  相似文献   

8.
The influence of soil texture on the distribution and availability of (238)U, (230)Th, and (226)Ra in soils was studied in soil samples collected at a rehabilitated uranium mine located in the Extremadura region in south-west Spain. The activity concentration (Bqkg(-1)) in the soils ranged from 60 to 750 for (238)U, from 60 to 260 for (230)Th, and from 70 to 330 for (226)Ra. The radionuclide distribution was determined in three soil fractions: coarse sand (0.5-2mm), medium-fine sand (0.067-0.5mm), and silt and clay (<0.067 mm). The relative mobility of the natural radionuclides in the different fractions was studied by comparison of the activity ratios between radionuclides belonging to the same radioactive series. The lability of these radionuclides in each fraction was also studied through selective extraction from the soils using a one-step sequential extraction scheme. Significant correlations were found for (238)U, (230)Th, and (226)Ra between the activity concentration per fraction and the total activity concentration in the bulk soil. Thus, from the determination of the activity concentration in the bulk soil, one could estimate the activity concentration in each fraction. Correlations were also found for (238)U and (226)Ra between the labile activity concentration in each fraction and the total activity concentration in bulk soil. Assuming that there is some particle-size fraction that predominates in the process of soil-to-plant transfer, the parameters obtained in this study should be used as correction factors for the transfer factors determined from the bulk soil in previous studies.  相似文献   

9.
The specific activity of (226)Ra, (232)Th and (40)K in 52 Turkish pumice samples collected from 11 geographical areas located in Central Anatolia, Eastern Anatolia, Mediterranean and Aegean regions was determined by gamma-ray spectrometry with a high-purity germanium (HPGe) detector. The specific activity of (226)Ra, (232)Th and (40)K ranged from 12.7+/-0.5 to 256.2+/-9.1Bqkg(-1) with a mean of 89.1+/-65.2Bqkg(-1), 12.3+/-1.0 to 237.9+/-12.2Bqkg(-1) with a mean of 87.0+/-61.4Bqkg(-1) and 300.1+/-5.5 to 1899.0+/-30.8Bqkg(-1) with a mean of 1211.9+/-419.8Bqkg(-1), respectively. Elemental concentrations were determined for U (from 1.0 to 20.7ppm with a mean of 7.2+/-5.3ppm), Th (from 3.0 to 58.6ppm with a mean of 21.4+/-15.1ppm) and K (from 1.0 to 6.1% with a mean of 3.9+/-1.3%). The radium equivalent activity (Ra(eq)), the activity index, the emanation coefficient, the (222)Rn mass exhalation rate, the indoor absorbed dose rate and the effective dose rate were estimated for the radiation hazard of the natural radioactivity in all samples. The calculated mean Ra(eq) value was 306.6+/-177.7Bqkg(-1) (54.6+/-5.5 to 737.6+/-49.0Bqkg(-1)) for all pumice samples. This value is lower than the recommended limit value of 370Bqkg(-1) for building raws and products. The emanation coefficient and the (222)Rn mass exhalation rate of all samples ranged from 29.4 to 42.9% with a mean of 36.2% and from 11.0 to 196.4muBqkg(-1)s(-1) with a mean of 73.5muBqkg(-1)s(-1), respectively. The mean indoor absorbed dose rate and the corresponding mean effective dose rate were 274.6+/-153.6nGyh(-1) (50.4-644.6nGyh(-1)) and 1.35+/-0.75mSvy(-1) (0.24-3.16mSvy(-1)), respectively. For all pumice samples the mean indoor absorbed dose rate is about three times higher than the population-weighted average of 84nGyh(-1), while the mean effective dose rate values except for PUM 05, PUM 06, PUM 10 and PUM 15 exceed the dose criterion of 1mSvy(-1).  相似文献   

10.
A method by inductively coupled plasma mass spectrometry (ICP-MS) was developed which allows the measurement of (236)U at concentration ranges down to 3 x 10(-14)g g(-1) and extremely low (236)U/(238)U isotope ratios in soil samples of 10(-7). By using the high-efficiency solution introduction system APEX in connection with a sector-field ICP-MS a sensitivity of more than 5,000 counts fg(-1) uranium was achieved. The use of an aerosol desolvating unit reduced the formation rate of uranium hydride ions UH(+)/U(+) down to a level of 10(-6). An abundance sensitivity of 3 x 10(-7) was observed for (236)U/(238)U isotope ratio measurements at mass resolution 4000. The detection limit for (236)U and the lowest detectable (236)U/(238)U isotope ratio were improved by more than two orders of magnitude compared with corresponding values by alpha spectrometry. Determination of uranium in soil samples collected in the vicinity of Chernobyl nuclear power plant (NPP) resulted in that the (236)U/(238)U isotope ratio is a much more sensitive and accurate marker for environmental contamination by spent uranium in comparison to the (235)U/(238)U isotope ratio. The ICP-MS technique allowed for the first time detection of irradiated uranium in soil samples even at distances more than 200 km to the north of Chernobyl NPP (Mogilev region). The concentration of (236)U in the upper 0-10 cm soil layers varied from 2 x 10(-9)g g(-1) within radioactive spots close to the Chernobyl NPP to 3 x 10(-13)g g(-1) on a sampling site located by >200 km from Chernobyl.  相似文献   

11.
The natural radioactivity due to presence of (226)Ra, (232)Th and (40)K radionuclides in raw materials, intermediate products (clinker) and end products (22 different cement types) was measured using a gamma-ray spectrometry with HPGe detector. The specific radioactivity of (226)Ra, (232)Th and (40)K in the analyzed cement samples ranged from 12.5+/-0.3 to 162.5+/-1.7Bqkg(-1) with a mean of 40.5+/-26.7Bqkg(-1), 6.7+/-0.3 to 124.9+/-2.5Bqkg(-1) with a mean of 26.1+/-18.9Bqkg(-1) and 64.4+/-2.3 to 679.3+/-18.2Bqkg(-1) with a mean of 267.1+/-102.4Bqkg(-1), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the emanation coefficient, the (222)Rn mass exhalation rate and the indoor absorbed dose rate were estimated for the radiation hazard of the natural radioactivity in all samples. The calculated Ra(eq) values of cement samples (37.2+/-8.7-331.1+/-15.5Bqkg(-1) with a mean of 98.3+/-53.8) are lower than the limit of 370Bqkg(-1) set for building materials. The Ra(eq) values were compared with the corresponding values for cement of different countries. The mean indoor absorbed dose rate is slightly higher than the population-weighted average of 84nGyh(-1).  相似文献   

12.
The Kadji-Sai abandoned field of U-bearing brown coal on the southern coast of Lake Issyk-Kul (Kyrgyzstan) poses a threat of radioactive pollution to the world's fifth deepest and second largest pristine highland lake. The valleys of ephemeral streams in the lake catchment are filled with coarse-grained sand and clay, with a background U--Ra activity of 35--55 Bqkg(-1). High activity areas vs. this background come from three sources: (1) scarce outcrops of uraniferous brown coal and mining wastes containing fragments of this coal with (238)U/(226)Ra ratios of 0.8 due to uranium losses through weathering; (2) manmade anomalies caused by a radioactive waste dump, where U was extracted from the ash of coal burnt at a coal-fired power plant. As a result, the (238)U/(226)Ra ratios become 0.15--0.25; (3) six catch pools terraced below the mine, where U activity decreases downslope, and (238)U/(226)Ra ratios reach 150--200. Uranium lost in the extraction process may have been retained on the terraces. The distribution pattern of radionuclides in the bottom sediments of the lake is controlled by water depth and offshore distance. The upper section of homogeneous limy--argillic deposits in the lake center remains undisturbed by currents, as indicated by regular sub-exponential distribution of atmospheric (137)Cs and (210)Pb(atm). Sedimentation rate in the lake center for the past century, found from (210)Pb, was 0.32 mmyr(-1). (238)U/(226)Ra in deep-water sediments was about 3. The activity of uranium adsorbed by sediments from the lake water was estimated by subtraction of the Ra-equilibrium component from the total U activity. Thus, the flux of dissolved U to the bottom sediments was as 2.07 x 10(-7)gcm(-2)yr(-1). The upper section of near-shore deposits was disturbed by currents, with (137)Cs and (210)Pb(atm) more or less uniformly distributed in this layer. Peaks of (226)Ra and (210)Pb occur at different depths from 5 to 20 cm below the sediment surface, with (238)U/(226)Ra ratios 0.28--0.44. The presence of mullite in these sediments indicated that radioactive ash penetrated into the lake in the past. At present, (226)Ra in the ash is buried under a non-radioactive cap.  相似文献   

13.
A study is presented on the distribution and mobilization of the natural U isotopes (238U and 234U), 230Th, and 226Ra in the sediments of a small river crossing an uranium mineralized zone where a disused uranium mine is located. Due to the preferential directions for surface run-off waters and to the mine's situation, one sampling point along the river bed was identified as a point of accumulation of radionuclides. The average values of the activity concentrations (Bq/kg) in this sediment sample were 5,025, 5,055, 5,915 and 1,694 for 238U, 234U, 230Th and 226Ra, respectively, while the respective average values of the activity concentrations (Bq/kg) for the sediment sample considered to give the background level were 125, 124, 131 and 370. Isotopic ratios between the descendants of 238U served to clarify some paths of distribution, involving the soils nearest to the sampling points and the location of these points with respect to the disused mine. The differences in behaviour found between the uranium, thorium and radium isotopes were associated to the mobility of these radionuclides in the fluvial system studied. Correlations between the radionuclide activity concentration ratios and stable element concentrations in the sediment samples were also investigated.  相似文献   

14.
The Red Sea is a deep semi-enclosed and narrow basin connected to the Indian Ocean by a narrow sill in the south and to the Suez Canal in the north. Oil industries in the Gulf of Suez, phosphate ore mining activities in Safaga-Quseir region and intensified navigation activities are non-nuclear pollution sources that could have serious radiological impacts on the marine environment and the coastal ecosystems of the Red Sea. It is essential to establish the radiological base-line data, which does not exist yet, and to investigate the present radio-ecological impact of the non-nuclear industries to preserve and protect the coastal environment of the Red Sea. Some natural and man-made radionuclides have been measured in shore sediment samples collected from the Egyptian coast of the Red Sea. The specific activities of 226Ra and 210Pb (238U) series, 232Th series, 40K and 137Cs (Bq/kg dry weight) were measured using gamma ray spectrometers based on hyper-pure germanium detectors. The specific activities of 210Po (210Pb) and uranium isotopes (238U, 235U and 234U) (Bq/kg dry weight) were measured using alpha spectrometers based on surface barrier (PIPS) detectors after radiochemical separation. The absorbed radiation dose rates in air (nGy/h) due to natural radionuclides in shore sediment and radium equivalent activity index (Bq/kg) were calculated. The specific activity ratios of 228Ra/226Ra, 210Pb/226Ra, 226Ra/238U and 234U/238U were calculated for evaluation of the geo-chemical behaviour of these radionuclides. The average specific activity of 226Ra (238U) series, 232Th series, 40K and 210Pb were 24.7, 31.4, 427.5 and 25.6 Bq/kg, respectively. The concentration of 137Cs in the sediment samples was less than the lower limit of detection. The Red Sea coast is an arid region with very low rainfall and the sediment is mainly composed of sand. The specific activity of 238U, 235U and 234U were 25.3, 2.9 and 25.0 Bq/kg. The average specific activity ratios of 226Ra/228Ra, 210Pb/226Ra and 234U/238U were 1.67, 1.22 and 1.0, respectively. The relationship between 226Ra/228Ra activity ratio and sample locations along the coastal shoreline indicates the increase of this ratio in the direction of the Shuqeir in the north and Safaga in the south where the oil exploration and phosphate mining activities are located. These activities may contribute a high flux of 226Ra. The concentration and distribution pattern of 226Ra in sediment can be used to trace the radiological impact of the non-nuclear industries on the Red Sea coast.  相似文献   

15.
Phosphate and environmental samples were collected from Abu Tartor phosphate mine and the surrounding region. The activity concentration of 226Ra (238U) series, 232Th series and 40K were measured using a gamma-ray spectrometer. The activities of uranium isotopes (238U, 235U and 234U) and 210Pb were measured using an alpha spectrometer and a low-background proportional gas counting system, respectively, after radiochemical separation. The results are discussed and compared with the levels in phosphate rocks from different countries. It seems that the Abu Tartor phosphate deposit has the lowest radioactivity level of exploited phosphate of sedimentary origin. 226Ra/238U, 210Pb/226Ra, 234U/238U and 226Ra/228Ra activity ratios were calculated and are discussed. The radioactivity levels in the surrounding region and the calculated exposure dose (nGy/h) will be considered as a pre-operational baseline to estimate the possible radiological impacts due to mining, processing and future phosphate industrial activities. To minimize these impacts, the processing wastes should be recycled to the greatest possible extent.  相似文献   

16.
Soil samples collected from locations in Kosovo where depleted uranium (DU) ammunition was expended during the 1999 Balkan conflict were analysed for uranium and plutonium isotopes content (234U, 235U, 236U, 238U, 238Pu, (239 + 240)Pu). The analyses were conducted using gamma spectrometry (235U, 238U), alpha spectrometry (238Pu, (239 + 240)Pu), inductively coupled plasma-mass spectrometry (ICP-MS) (234U, 235U, 236U, 238U) and accelerator mass spectrometry (AMS) (236U)). The results indicated that whenever the U concentration exceeded the normal environmental values (approximately 2 to 3 mg/kg) the increase was due to DU contamination. 236U was also present in the released DU at a constant ratio of 236U (mg/kg)/238U (mg/kg) = 2.6 x 10(-5), indicating that the DU used in the ammunition was from a batch that had been irradiated and then reprocessed. The plutonium concentration in the soil (undisturbed) was about 1 Bq/kg and, on the basis of the measured 238Pu/(239 + 240)Pu, could be entirely attributed to the fallout of the nuclear weapon tests of the 1960s (no appreciable contribution from DU).  相似文献   

17.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The (222)Rn activity concentrations ranged from 0.24 to 1168BqL(-1). The statistical analysis showed a log-normal distribution with a mean of (111+/-7)BqL(-1) and a median of (36+/-3)BqL(-1). A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of (222)Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed (222)Rn activity concentrations above the Euratom recommended limit of 100BqL(-1). Three uranium series radionuclides ((238)U, (234)U, and (226)Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

18.
During Balkan conflicts in 1994-1995, depleted uranium (DU) ordnance was employed and was left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Bosnia and Herzegovina, radiological survey of DU in biological and water samples were carried out over the period 12-24 October 2002. The uranium isotopic concentrations in biological samples collected in Bosnia and Herzegovina, mainly lichens, mosses and barks, were found to be in the range of 0.27-35.7 Bq kg(-1) for (238)U, 0.24-16.8 Bq kg(-1) for (234)U, and 0.02-1.11 Bq kg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control site. Moreover, the (236)U in some of the samples was detectable. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at most sites examined, but in very low levels. The presence of DU in the biological samples was as a result of DU contamination in air. The uranium concentrations in water samples collected in Bosnia and Herzegovina were found to be in the range of 0.27-16.2 m Bq l(-1) for (238)U, 0.41-15.6 m Bq l(-1) for (234)U and 0.012-0.695 m Bq l(-1) for (235)U, and two water samples were observed to be DU positive; these values are much lower than those in mineral water found in central Italy and below the WHO guideline for public drinking water. From radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated sites in terms of possible DU contamination of water and/or plants.  相似文献   

19.
The aim of this work was to determine the concentrations and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes. An analytical method was developed with a plutonium and uranium separation procedure based on extraction chromatography (using 2 mL TEVA and UTEVA columns) and detection with a quadrupole ICP-MS applying an ultra-sonic nebulizer coupled with a membrane desolvation system. Starting from blank swipes, the background equivalent concentration (BEC) was 8 fg for 239Pu and 1 ng 238U. The method was successfully applied to certified reference materials as well as to round robin samples obtained in the framework of the inter-laboratory exercise program, promoted by the Brazilian–Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), together with the US Department of Energy (USDOE). After the introduction of an additional ion-exchange separation step, the methodology was applied to the IAEA-384 sediment reference sample with precise and accurate total plutonium and uranium, 240Pu/239Pu, 241Pu/239Pu, 234U/238U and 235U/238U atomic ratio results.  相似文献   

20.
238U and (232)Th concentrations and the extent of (238)U-(234)U-(230)Th radioactive equilibrium have been measured in a suite of Precambrian carbonates and black shales from the Lesser Himalaya. These measurements were made to determine their abundances in these deposits, their contributions to dissolved uranium budget of the headwaters of the Ganga and the Indus in the Himalaya and to assess the impact of weathering on (238)U-(234)U-(230)Th radioactive equilibrium in them. (238)U concentrations in Precambrian carbonates range from 0.06 to 2.07 microg g(-1). The 'mean' U/Ca in these carbonates is 2.9 ng U mg(-1) Ca. This ratio, coupled with the assumption that all Ca in the Ganga-Indus headwaters is of carbonate origin and that U and Ca behave conservatively in rivers after their release from carbonates, provides an upper limit on the U contribution from these carbonates, to be a few percent of dissolved uranium in rivers. There are, however, a few streams with low uranium concentrations, for which the carbonate contribution could be much higher. These results suggest that Precambrian carbonates make only minor contributions to the uranium budget of the Ganga-Indus headwaters in the Himalaya on a basin wide scale, however, they could be important for particular streams. Similar estimates of silicate contribution to uranium budget of these rivers using U/Na in silicates and Na* (Na corrected for cyclic and halite contributions) in river waters show that silicates can contribute significantly (approximately 40% on average) to their U balance. If, however, much of the uranium in these silicates is associated with weathering resistant minerals, then the estimated silicate uranium component would be upper limits.Uranium concentration in black shales averages about 37 microg g(-1). Based on this concentration, supply of U from at least approximately 50 mg of black shales per liter of river water is needed to balance the average river water U concentration, 1.7 microg L(-1) in the Ganga-Indus headwaters. Data on the abundance and distribution of black shales in their drainage basin are needed to test if this requirement can be met. (234)U/(238)U activity ratios in both carbonates and black shales are at or near equilibrium, thus preferential mobilization of (234)U from these deposits, if any, is within analytical uncertainties. (230)Th is equivalent to or in excess of (238)U in most of the carbonates. (230)Th/(238)U>1 indicates that during weathering, uranium is lost preferentially over Th. (232)Th concentrations in carbonates are generally quite low, <0.5 microg g(-1), though with a wide range, 0.01-4.8 microg g(-1). The variation in its concentrations seem to be regulated by aluminosilicate content of the carbonates as evident from the strong positive correlation between (232)Th and Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号