首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historical 239Pu activity concentrations and 240Pu/239Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher 240Pu/239Pu atom ratios (> 0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the 240Pu/239Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location.  相似文献   

2.
Monitoring of 239,240Pu in surface air of Prague started in 1986 in connection with the Chernobyl accident. Measurable activities of 10–28 μBq m−3 were found from 29 April 1986 to 5 May 1986. In the most of the monitoring periods of 1987–1996, activities of 239,240Pu in air were not measurable. Positive values for 239,240Pu and 238Pu in air could be obtained after installation of an aerosol sampler with higher flow-rate in 1997. Activity concentrations of 239,240Pu and 238Pu in Prague air in the most of quarters of 1997–2006 were in the range 0.53–5.06 and <0.16–1.10 nBq m−3, respectively. Seasonal fluctuations can be found in content of 239,240Pu in air. Activity ratios of 238Pu/239,240Pu in air are higher than those in top soil, so it can be supposed that 238Pu is coming to air of Prague also from other sources than resuspension of fallout from atmospheric nuclear tests.  相似文献   

3.
Sediment accumulation rates in the lower Columbia River have been determined by three radiometric techniques: (1) 154Eu/152Eu activity ratios as a function of depth in the sediment column; (2) location of the 239, 240Pu activity maximum resulting from fallout input during atmospheric nuclear device testing in the period 1961–1963; and (3) the inflection in 238Pu/239,240Pu ratios signifying the arrival of debris from the aborted Transit Navigational Satellite (SNAP-9A). Using these techniques, calculated accumulation rates behind McNary Reservoir, the first slack water site downstream of the Hanford Reservation, appear far lower than previously thought.Long-term sediment storage occurs in all reservoirs sampled in the lower Columbia. These findings do not support previous claims that sediment accumulation at these sites is transitory. Moreover, virtually all of the suspended material carried by the mainstream Columbia below its confluence with the Snake River may be exported to the northeast Pacific Ocean.  相似文献   

4.
Sediment deposits are the ultimate sink for anthropogenic radionuclides entering the marine environment. The major sources of anthropogenic radionuclides to the Barents Sea are fallout from nuclear weapons tests, long range transport from other seas, and river and non-point freshwater supplies. In this study we investigated activity concentrations, ratios, and inventories of the anthropogenic radionuclides, 137Cs, 238Pu, 239,240Pu in dated sediment cores collected along a north-south transect in the northwestern Barents Sea. The data were used to evaluate the influence of different sources on the derived spatial and temporal patterns of anthropogenic radionuclides in seafloor sediment deposits. Activity concentrations of 137Cs ranged from <0.1 Bq/kg to 10.5 Bq/kg while 239,240Pu ranged from <0.01 Bq/kg to 2.74 Bq/kg and 238Pu activity concentrations ranged from <0.01 Bq/kg to 0.22 Bq/kg. Total inventories of 137Cs ranged from 29.5 ± 1.5 Bq/m2 to 152.7 ± 5.6 Bq/m2 and for 239,240Pu inventories (6 sediment layers only) ranged from 9.5 ± 0.3 Bq/m2 to 29.7 ± 0.4 Bq/m2. Source contributions varied among stations and between the investigated radionuclides. The 238Pu/239,240Pu ratios up to 0.18 indicate discharges from nuclear fuel reprocessing plants as a main contributor of plutonium. Based on 238Pu/239,240Pu ratio, it was calculated that up to 19-27% of plutonium is supplied from sources other than atmospheric global fallout. Taking into account Atlantic current flow trajectories and that both activity concentrations and inventories of plutonium negatively correlate with latitude, Sellafield is a major source for the Barents Sea. Concentrations and inventories of 137Cs correlate positively with latitude and negatively with distance from the Svalbard archipelago. The 137Cs concentrations are highest in an area of intensive melting of sea ice formed along the Siberian coast. Thus, sea ice and supplies from Svalbard may be important source of 137Cs to the Barents Sea seafloor.  相似文献   

5.
The objective of this paper is to report on the results of a study of 238Pu, 239 + 240Pu and 241Am inventories onto Blelham Tarn in Cumbria (UK). The atmospheric fallout inventory was obtained by analysing soil cores and the results are in good agreement with the literature: 101 Bq m(-2) for 239 + 240Pu; 4.5 Bq m(-2) for 238Pu and 37 Bq m(-2) for 241Am. The sediment core inventory for the whole lake is compared to the atmospheric fallout inventory. The sediment activity is 60-80% higher than the estimated fallout activity, showing a catchment area contribution and in particular the stream input.  相似文献   

6.
A sediment core from a lake downwind of the Rocky Flats Plant, where nuclear weapons components are produced, was used to reconstruct a time pattern of off-site plutonium deposition. Core sections were dated by analyses of 137Cs, 239,240Pu, 238Pu, and 241Am fallout from nuclear testing and 238Pu fallout from a satellite failure. A peak in transuranic concentrations occurred in late 1969 which was attributable to the Plant. This was confirmed by mass isotopic analysis of plutonium isotopes in selected core segments where the global fallout and Plant contributions could be differentiated. The 18 nCi 239,240Pu per m2 from the Plant that had accumulated in the sediment is reasonable when compared to soil analyses.  相似文献   

7.
The construction of high resolution chronologies of sediment profiles corresponding to the last 50-100 years usually entails the measurement of fallout radionuclides 210Pb and 137Cs. The anthropogenic radionuclide, 137Cs, originating from atmospheric nuclear weapons testing can provide an important “first appearance” horizon of known age (1954-1955), providing much-needed validation for the sometimes uncertain interpretations associated with 210Pb geochronology. However, while 137Cs usually provides a strong signal in sediment in the northern hemisphere, total fallout of 137Cs in the southern hemisphere was only 25% that of the north and the low activities of 137Cs seen in Australian and New Zealand sediments can make its horizon of first appearance somewhat arguable. Low 137Cs fallout also limited the size of the 1963-1964 fallout peak, a peak that is usually seen in northern hemisphere sediment profiles but is often difficult to discern south of the equator.This paper shows examples of the use of nuclear weapons fallout Pu as a chronomarker in sediment cores from Australia (3 sites) and New Zealand (1 site). The Pu profiles of five cores are examined and compared with the corresponding 137Cs profiles and 210Pb geochronologies. We find that Pu has significant advantages over 137Cs, including greater measurement sensitivity using alpha spectrometry and mass spectrometric techniques compared to 137Cs measurements by gamma spectrometry. Moreover, Pu provides additional chronomarkers associated with changes in the Pu isotopic composition of fallout during the 1950s and 1960s. In particular, the 238Pu/239+240Pu activity ratio shows distinct shifts in the early 1950s and the mid to late 1960s, providing important known-age horizons in southern hemisphere sediments. For estuarine and near-shore sediments Pu sometimes has another significant advantage over 137Cs due to its enrichment in bottom sediment relative to 137Cs resulting from the more efficient scavenging of dissolved Pu in seawater by sediment particles.  相似文献   

8.
Both global and Chernobyl fallout have resulted in environmental contamination with radionuclides such as 137Cs, 90Sr and 239+240Pu. In environmental samples, 137Cs and 239+240Pu can be divided into the contributions of either source, if also the isotopes 134Cs and 238Pu are measurable, based on the known isotopic ratios in global and Chernobyl fallout. No analogous method is available for 90Sr. The activity ratios of Sr to Cs and Pu, respectively, are known for the actual fallout mainly from air filter measurements; but due to the high mobility of Sr in the environment, compared to Cs and Pu, these ratios generally do not hold for the inventory many years after deposition. In this paper we suggest a method to identify the mean contributions of global and Chernobyl fallout to total Sr in soil, sediment and cryoconite samples from Alpine and pre-Alpine regions of Austria, based on a statistical evaluation of Sr/Cs/Pu radionuclide activity ratios. Results are given for Sr:Cs, Sr:Pu and Cs:Pu ratios. Comparison with fallout data shows a strong depletion of Sr against Cs and Pu.  相似文献   

9.
The activity concentrations of (237)Np and the two Pu isotopes, (239)Pu and (240)Pu, were determined in lichen samples (Cladonia stellaris) contaminated by fallout from atmospheric nuclear test explosions and the Chernobyl accident. The samples were collected at 18 locations in Sweden, from north to south, between 1986 and 1988 and analysed with high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and alpha spectrometry. Data on the activity ratios (238)Pu/(239+240)Pu and (134)Cs/(137)Cs measured previously were also included in this study for comparison. The (237)Np activity concentration ranged from 0.08 +/- 0.01 to 2.08 +/- 0.17 MBq kg(-1), depending on the location of the sampling site and time of collection. The (239+240)Pu activity concentration ranged from 0.09 +/- 0.01 to 4.09 +/- 0.15 Bq kg(-1), with the (240)Pu/(239)Pu atomic ratio ranging between 0.16 +/- 0.01 and 0.44 +/- 0.03, the higher ratios indicating a combination of weapons test fallout and Chernobyl fallout. The (237)Np/(239)Pu atomic ratios ranged between 0.06 +/- 0.01 and 0.42 +/- 0.04, the lower ratios indicating combination of weapons test fallout and Chernobyl fallout. At a well-defined sampling site at Lake Rogen (62.32 degrees N, 12.38 degrees E), additional lichen samples were collected between 1987 and 1998 to study the distribution of Np and Pu in different layers. The concentrations of the two elements follow each other quite well in the profile.  相似文献   

10.
Monitoring of (239,240)Pu in surface air of Prague started in 1986 in connection with the Chernobyl accident. Measurable activities of 10-28muBqm(-3) were found from 29 April 1986 to 5 May 1986. In the most of the monitoring periods of 1987-1996, activities of (239,240)Pu in air were not measurable. Positive values for (239,240)Pu and (238)Pu in air could be obtained after installation of an aerosol sampler with higher flow-rate in 1997. Activity concentrations of (239,240)Pu and (238)Pu in Prague air in the most of quarters of 1997-2006 were in the range 0.53-5.06 and <0.16-1.10nBqm(-3), respectively. Seasonal fluctuations can be found in content of (239,240)Pu in air. Activity ratios of (238)Pu/(239,240)Pu in air are higher than those in top soil, so it can be supposed that (238)Pu is coming to air of Prague also from other sources than resuspension of fallout from atmospheric nuclear tests.  相似文献   

11.
The total 239+240Pu activities and 240Pu/239Pu atom ratios in surface soil samples (0–5 cm) in the Kumtag Desert in western Gansu Province, and in a soil core sample in Lanzhou were investigated using a sector-field ICP-MS. In the surface soil samples, 239+240Pu activities in fine particles (<150 μm) were 1.3–2.1 times of those in coarse particles (150 μm–1 mm) which ranged from 0.005 to 0.157 mBq/g. Atom ratios of 240Pu/239Pu in the surface soils ranged from 0.168 to 0.192 with a mean of 0.182 ± 0.008. The mean ratio was similar to the typical global fallout value although the Kumtag Desert was believed to have received close-in fallout derived from Chinese nuclear weapons tests mainly conducted in the 1970s. Furthermore, the mean 240Pu/239Pu atom ratio observed in the soil core sample in Lanzhou was similar to the typical global fallout value. In the soil core sample, 239+240Pu activities in the various layers ranged from 0.012 to 0.23 mBq/g, and the inventory of 239+240Pu (32.4 Bq/m2, 0–23 cm) was slightly lower than that expected from global fallout (42 Bq/m2) at the same latitude. Rapid downward migration of Pu isotopes was observed in Lanzhou soil core sample layers. The contribution of the 10-cm deep top layers of surface soils to total inventory was only 17%, while the contribution of deeper layers (10–23 cm) was as high as 83%. The 239+240Pu activity levels and 240Pu/239Pu atom ratios in soils in Gansu Province, China are similar to those in atmospheric deposition samples collected in the spring in recent years in Japan.  相似文献   

12.
To study the Pu concentration and isotope ratio distributions present in China, the 239+240Pu total activities and 240Pu/239Pu atom ratios in core soil samples from Hubei Province in central China were investigated using Accelerator Mass Spectrometry (AMS). The activities ranged from 0.019 to 0.502 mBq g−1 and the 239+240Pu inventories of 45 and ∼55 Bq m−2 agree well with that expected from global fallout. The 240Pu/239Pu atom ratios in the soil ranged from 0.172 to 0.220. The ratios are similar to typical global fallout values. Hence, any close-in fallout contribution from the Chinese nuclear weapons tests, mainly conducted in the 1970s, must have either been negligible or had a similar 240Pu/239Pu ratio to that of global fallout. The top 10 cm layer of the soil contributes ∼90% of the total inventory and the maximum concentrations appeared in the 2-4 cm or 4-6 cm layers. It is suggested that climatic conditions and organic content are the two main factors that affect the vertical migration of plutonium in soil.  相似文献   

13.
The activity concentration of plutonium in an environmental sample does not usually constitute sufficient information to determine if it is due only to fallout. Alpha and gamma spectrometry are used here conjointly in the study of environmental soil samples to distinguish between samples showing plutonium contamination due to fallout exclusively, and samples contaminated with plutonium from another source. The method was applied to soil samples collected in Palomares (Spain), where an accidental release of aerosols contaminated with plutonium occurred. The two contributions (fallout and accidentally released plutonium) were separated by means of the activity ratios between various radionuclides present in the samples analyzed. The fallout level was estimated from the 239 + 240Pu/137Cs activity ratio. For samples showing contamination due to the accident, the 238Pu/239 + 240Pu and 239Pu/240Pu activity ratios were also calculated to determine the grade of plutonium of this contamination.  相似文献   

14.
More than 50 soil samples were analysed from different parts of the country, the activity concentration of 239+240Pu was in the range of 0.01-0.84 Bq/kg dry soil with the average of 0.10 Bq/kg. 238Pu could be detected only in few moss samples and 238Pu/239+240Pu ratio determines the origin of plutonium. 241Pu was determined by liquid scintillation spectrometry. The activity concentration of this isotope in the soil is between 0.04 and 3.74 Bq/kg with the average of 0.82 Bq/kg, while in the moss is also similar 0.01-2.07 Bq/kg fresh mass with the average of 0.43 Bq/kg. Significant difference could not be observed between the different types of soils occurring in the country, but the results could be sorted according to the sampling carried out on undisturbed or cultivated area. The isotope ratios 241Pu/239+240Pu prove that the origin of the plutonium in Hungary is the global fallout determined by the atmospheric nuclear weapon tests.  相似文献   

15.
Plutonium in Polish forest soils and the Bór za Lasem peat bog is resolved between Chernobyl and global fallout contributions via inductively coupled plasma mass spectrometric measurements of 240Pu/230Pu and 241Pu/239Pu atom ratios in previously prepared NdF3 alpha spectrometric sources. Compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/230Pu and 241Pu/239Pu co-vary and range from 0.186 to 0.348 and 0.0029 to 0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407 x [240Pu/239Pu] - 0.0413; r2 = 0.9924). Two-component mixing models are developed to apportion 239+240Pu and 241Pu activities; various estimates of the percentage of Chernobyl-derived 239+240Pu activity in forest soils range from < 10% to > 90% for the sample set. The 240Pu/230Pu - 241Pu/239Pu atom ratio mixing line extrapolates to estimate 241Pu/239Pu and the 241Pu/239+240Pu activity ratio for the Chernobyl source term (0.123 +/- 0.0007; 83 +/- 5; 1 May 1986). Sample 241Pu activities, calculated using existing alpha spectrometric 239+240Pu activities, and the 240Pu/230Pu and 241Pu/239Pu atom ratios, agree relatively well with previous liquid scintillation spectrometry measurements. Chernobyl Pu is most evident in locations from northeastern Poland. The 241Pu activities and/or the 241Pu/239Pu atom ratios are more sensitive than 240Pu/239Pu or 238Pu/239+240Pu activity ratios at detecting small Chernobyl 239+240Pu inputs, found in southern Poland. The mass spectrometric data show that the 241Pu activity is 40-62% Chernobyl-derived in southern Poland, and 58-96% Chernobyl in northeastern Poland. The Bór za Lasem peat bog (49.42 degrees N, 19.75 degrees E), located in the Orawsko-Nowotarska valley of southern Poland, consists of global fallout Pu.  相似文献   

16.
The paper presents a new sampling method for studying in-body radioactive contamination by bone-seeking radionuclides such as 90Sr, 239+240Pu, 238Pu, 241Am and selected gamma-emitters, in human bones. The presented results were obtained for samples retrieved from routine surgeries, namely knee or hip joints replacements with implants, performed on individuals from Southern Poland. This allowed to collect representative sets of general public samples. The applied analytical radiochemical procedure for bone matrix is described in details. Due to low concentrations of 238Pu the ratio of Pu isotopes which might be used for Pu source identification is obtained only as upper limits other then global fallout (for example Chernobyl) origin of Pu. Calculated concentrations of radioisotopes are comparable to the existing data from post-mortem studies on human bones retrieved from autopsy or exhumations. Human bones removed during knee or hip joint surgery provide a simple and ethical way for obtaining samples for plutonium, americium and 90Sr in-body contamination studies in general public.  相似文献   

17.
The aim of the paper was plutonium (238Pu and 239+240Pu) determination in seabirds, permanently or temporarily living in northern Poland at the Baltic Sea coast. Together 11 marine birds species were examined: 3 species permanently residing in the southern Baltic, 4 species of wintering birds and 3 species of migrating birds. The obtained results indicated plutonium is non-uniformly distributed in organs and tissues of analyzed seabirds. The highest plutonium content was found in the digestion organs and feathers, the smallest in skin and muscles. The plutonium concentration was lower in analyzed species which feed on fish and much higher in herbivorous species. The main source of plutonium in analyzed marine birds was global atmospheric fallout.  相似文献   

18.
A sediment core collected from the sub-aqueous delta of the Yangtze River estuary was subjected to analyses of 137Cs and plutonium (Pu) isotopes. The 137Cs was measured using γ-spectrometry at the laboratories at the Nanjing University and Pu isotopes were determined with Accelerator Mass Spectrometry (AMS), measurements made at the Australian National University. The results show considerable structure in the depth concentration profiles of the 137Cs and 239+240Pu. The shape of the vertical 137Cs distribution in the sediment core was similar to that of the Pu. The maximum 137Cs and 239+240Pu concentrations were 16.21 ± 0.95 mBq/g and 0.716 ± 0.030 mBq/g, respectively, and appear at same depth. The average 240Pu/239Pu atom ratio was 0.238 ± 0.007 in the sediment core, slightly higher than the average global fallout value. The changes in the 240Pu/239Pu atom ratios in the sediment core indicate the presence of at least two different Pu sources, i.e., global fallout and another source, most likely close-in fallout from the Pacific Proving Grounds (PPG) in the Marshall Islands, and suggest the possibility that Pu isotopes are useful as a geochronological tool for coastal sediment studies. The 137Cs and 239+240Pu inventories were estimated to be 7100 ± 1200 Bq/m2 and 407 ± 27 Bq/m2, respectively. Approximately 40% of the 239+240Pu inventory originated from the PPG close-in fallout and about 50% has derived from land-origin global fallout transported to the estuary by the river. This study confirms that AMS is a useful tool to measure 240Pu/239Pu atom ratio and can provide valuable information on sedimentary processes in the coastal environment.  相似文献   

19.
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source.  相似文献   

20.
Concentrations of the anthropogenic 137Cs and 239,240Pu in surface water of the Sea of Japan were in the ranges of 2·7–3·8 mBq l-1 and 1·3–8·0 μBq l-1, respectively, in 1993–1994, which are in the same order of magnitude as those in the North Pacific. The time-series data indicated a marked increase of surface 137Cs in 1986 and 1987 after the major radioactive dumping and the Chernobyl fallout in 1986 and then rapidly decreased thereafter. The apparent half-residence time of 137Cs in the surface water was estimated to be about 3 years for excess 137Cs and 16 years for a rather long time-scale transport, respectively. For 239,240Pu in the surface water, no systematic temporal variation was observed over the past two decades, which may reflect rapid recycling of deeper Pu. The results revealed that most of the recent radioactivity in water columns of the Sea of Japan was of global fallout origin from atmospheric nuclear testing and partly the Chernobyl fallout. No clear signal about the effect of radioactivity from Russian dumping was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号